Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the semiadditivity of the capacities associated with signed vector valued Riesz kernels

Author: Laura Prat
Journal: Trans. Amer. Math. Soc. 364 (2012), 5673-5691
MSC (2010): Primary 42B20
Published electronically: June 22, 2012
MathSciNet review: 2946926
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to show the semiadditivity of the capacities associated with the signed vector valued Riesz kernels of homogeneity $ -\alpha $ in $ {\mathbb{R}}^n$, $ 0<\alpha <n$.

References [Enhancements On Off] (What's this?)

  • [AH] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundl. Math. Wiss. 314, Springer-Verlag, Berlin, 1996. MR 1411441 (97j:46024)
  • [ENVo] V. Eidermann, F. Nazarov and A. Volberg, Vector-valued Riesz potentials: Cartan type estimates and related capacities, Proc. Amer. Math. Soc. (2010), 1-32. MR 2734959 (2011j:42020)
  • [EVo] V. Eidermann and A. Volberg, $ L^2$-norm and estimates from below for Riesz transforms on Cantor sets, Preprint 2010.
  • [G] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer-Verlag, Berlin, 1972. MR 0454006 (56:12257)
  • [MPrV1] J. Mateu, L. Prat and J. Verdera, The capacity associated to signed Riesz kernels, and Wolff potentials, J. reine angew. Math. 578 (2005), 201-223. MR 2113895 (2005m:31012)
  • [MPrV2] J. Mateu, L. Prat and J. Verdera, The capacity associated with scalar Riesz kernels, and analytic capacity, to appear in Indiana Univ. Math. J.
  • [MT] J. Mateu and X. Tolsa, Riesz transforms and harmonic $ {\rm Lip}\sb 1$-capacity in Cantor sets, Proc. London Math. Soc. (3) 89 (2004), no. 3, 676-696. MR 2107011 (2005g:42038)
  • [MaP] P. Mattila and P. V. Paramonov, On geometric properties of harmonic $ \operatorname {Lip}_1$-capacity, Pacific J. Math. 171 (1995), no 2, 469-491. MR 1372240 (97b:31005)
  • [MzS] V. G. Maz'ya and T. O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Monographs and Studies in Mathematics 23. Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 785568 (87j:46074)
  • [Me] M. S. Melnikov, Analytic capacity: discrete approach and curvature of measure, Sbornik: Mathematics 186 (1995), no. 6, 827-846. MR 1349014 (96f:30020)
  • [MeV] M. S. Melnikov and J. Verdera, A geometric proof of the $ L^2$ boundedness of the Cauchy integral on Lipschitz graphs, Inter. Math. Res. Not. 7 (1995), 325-331. MR 1350687 (96f:45011)
  • [NTVo] F. Nazarov, S. Treil and A. Volberg, The $ T(b)$-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin, CRM preprint, December 2002.
  • [P] P. V. Paramonov, On harmonic approximation in the $ {\mathcal C}^1$-norm, Math. USSR Sbor. 71 (1992), no. 1. MR 1085885 (92j:31006)
  • [Pr1] L. Prat, Potential theory of signed Riesz kernels: capacity and Hausdorff measure, Intern. Math. Res. Not. 19 (2004), 937-981. MR 2037051 (2004k:31012)
  • [Pr2] L. Prat, Null sets for the capacity associated to Riesz kernels, Illinois Journal of Math. 48 (2004), no. 3, 953-963. MR 2114262 (2005h:42040)
  • [RT] A. Ruiz de Villa and X. Tolsa, Characterization and semiadditivity of the $ C^1$ harmonic capacity, Trans. Amer. Math. Soc. 362 (2010) 3641-3675. MR 2601603 (2011g:31008)
  • [St] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. MR 0290095 (44:7280)
  • [T1] X. Tolsa, Painlevé's problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003), no. 1, 105-149. MR 1982794 (2005c:30020)
  • [T2] X. Tolsa, The semiadditivity of continuous analytic capacity and the inner boundary conjecture, Amer. J. Math. 126 (2004), 523-567. MR 2058383 (2005f:30052)
  • [T3] X. Tolsa, Calderón-Zygmund capacities and Wolff potentials on Cantor sets, Journal of Geometric Analysis 21 (2011), 195-223. MR 2755682
  • [V] J. Verdera, $ {\mathcal C}^m$ approximation by solutions of elliptic equations, and Calderón-Zygmund operators, Duke Math. J. 55 (1987), 157-187. MR 883668 (88e:35011)
  • [Vo] A. Volberg, Calderón-Zygmund capacities and operators on nonhomogeneous spaces, CBMS Reg. Conf. Ser. Math. 100. Amer. Math. Soc., Providence, RI, 2003. MR 2019058 (2005c:42015)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42B20

Retrieve articles in all journals with MSC (2010): 42B20

Additional Information

Laura Prat
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Catalunya

Received by editor(s): July 15, 2010
Published electronically: June 22, 2012
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society