On the semiadditivity of the capacities associated with signed vector valued Riesz kernels

Author:
Laura Prat

Journal:
Trans. Amer. Math. Soc. **364** (2012), 5673-5691

MSC (2010):
Primary 42B20

DOI:
https://doi.org/10.1090/S0002-9947-2012-05724-2

Published electronically:
June 22, 2012

MathSciNet review:
2946926

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to show the semiadditivity of the capacities associated with the signed vector valued Riesz kernels of homogeneity in , .

**[AH]**D. R. Adams and L. I. Hedberg,*Function Spaces and Potential Theory,*Grundl. Math. Wiss.**314**, Springer-Verlag, Berlin, 1996. MR**1411441 (97j:46024)****[ENVo]**V. Eidermann, F. Nazarov and A. Volberg,*Vector-valued Riesz potentials: Cartan type estimates and related capacities,*Proc. Amer. Math. Soc. (2010), 1-32. MR**2734959 (2011j:42020)****[EVo]**V. Eidermann and A. Volberg,*-norm and estimates from below for Riesz transforms on Cantor sets*, Preprint 2010.**[G]**J. Garnett,*Analytic Capacity and Measure,*Lecture Notes in Math.**297**, Springer-Verlag, Berlin, 1972. MR**0454006 (56:12257)****[MPrV1]**J. Mateu, L. Prat and J. Verdera,*The capacity associated to signed Riesz kernels, and Wolff potentials*, J. reine angew. Math.**578**(2005), 201-223. MR**2113895 (2005m:31012)****[MPrV2]**J. Mateu, L. Prat and J. Verdera,*The capacity associated with scalar Riesz kernels, and analytic capacity*, to appear in Indiana Univ. Math. J.**[MT]**J. Mateu and X. Tolsa,*Riesz transforms and harmonic -capacity in Cantor sets,*Proc. London Math. Soc. (3)**89**(2004), no. 3, 676-696. MR**2107011 (2005g:42038)****[MaP]**P. Mattila and P. V. Paramonov,*On geometric properties of harmonic -capacity,*Pacific J. Math.**171**(1995), no 2, 469-491. MR**1372240 (97b:31005)****[MzS]**V. G. Maz'ya and T. O. Shaposhnikova,*Theory of multipliers in spaces of differentiable functions,*Monographs and Studies in Mathematics 23. Pitman (Advanced Publishing Program), Boston, MA, 1985. MR**785568 (87j:46074)****[Me]**M. S. Melnikov,*Analytic capacity: discrete approach and curvature of measure,*Sbornik: Mathematics**186**(1995), no. 6, 827-846. MR**1349014 (96f:30020)****[MeV]**M. S. Melnikov and J. Verdera,*A geometric proof of the boundedness of the Cauchy integral on Lipschitz graphs,*Inter. Math. Res. Not.**7**(1995), 325-331. MR**1350687 (96f:45011)****[NTVo]**F. Nazarov, S. Treil and A. Volberg,*The -theorem on non-homogeneous spaces that proves a conjecture of Vitushkin*, CRM preprint, December 2002.**[P]**P. V. Paramonov,*On harmonic approximation in the -norm,*Math. USSR Sbor.**71**(1992), no. 1. MR**1085885 (92j:31006)****[Pr1]**L. Prat,*Potential theory of signed Riesz kernels: capacity and Hausdorff measure*, Intern. Math. Res. Not.**19**(2004), 937-981. MR**2037051 (2004k:31012)****[Pr2]**L. Prat,*Null sets for the capacity associated to Riesz kernels,*Illinois Journal of Math.**48**(2004), no. 3, 953-963. MR**2114262 (2005h:42040)****[RT]**A. Ruiz de Villa and X. Tolsa,*Characterization and semiadditivity of the harmonic capacity,*Trans. Amer. Math. Soc. 362 (2010) 3641-3675. MR**2601603 (2011g:31008)****[St]**E. M. Stein,*Singular integrals and differentiability properties of functions,*Princeton University Press, Princeton, 1970. MR**0290095 (44:7280)****[T1]**X. Tolsa,*Painlevé's problem and the semiadditivity of analytic capacity,*Acta Math.**190**(2003), no. 1, 105-149. MR**1982794 (2005c:30020)****[T2]**X. Tolsa,*The semiadditivity of continuous analytic capacity and the inner boundary conjecture,*Amer. J. Math.**126**(2004), 523-567. MR**2058383 (2005f:30052)****[T3]**X. Tolsa,*Calderón-Zygmund capacities and Wolff potentials on Cantor sets,*Journal of Geometric Analysis**21**(2011), 195-223. MR**2755682****[V]**J. Verdera,*approximation by solutions of elliptic equations, and Calderón-Zygmund operators,*Duke Math. J.**55**(1987), 157-187. MR**883668 (88e:35011)****[Vo]**A. Volberg,*Calderón-Zygmund capacities and operators on nonhomogeneous spaces*, CBMS Reg. Conf. Ser. Math.**100**. Amer. Math. Soc., Providence, RI, 2003. MR**2019058 (2005c:42015)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
42B20

Retrieve articles in all journals with MSC (2010): 42B20

Additional Information

**Laura Prat**

Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Catalunya

Email:
laurapb@mat.uab.cat

DOI:
https://doi.org/10.1090/S0002-9947-2012-05724-2

Received by editor(s):
July 15, 2010

Published electronically:
June 22, 2012

Article copyright:
© Copyright 2012
American Mathematical Society