Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

A realization theorem for modules of constant Jordan type and vector bundles


Authors: Dave Benson and Julia Pevtsova
Journal: Trans. Amer. Math. Soc. 364 (2012), 6459-6478
MSC (2010): Primary 20C20, 14F05
DOI: https://doi.org/10.1090/S0002-9947-2012-05482-1
Published electronically: June 28, 2012
MathSciNet review: 2958943
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be an elementary abelian $ p$-group of rank $ r$ and let $ k$ be a field of characteristic $ p$. We introduce functors $ \mathcal {F}_i$ from finitely generated $ kE$-modules of constant Jordan type to vector bundles over projective space $ \mathbb{P}^{r-1}$. The fibers of the functors $ \mathcal {F}_i$ encode complete information about the Jordan type of the module.

We prove that given any vector bundle $ \mathcal {F}$ of rank $ s$ on $ \mathbb{P}^{r-1}$, there is a $ kE$-module $ M$ of stable constant Jordan type $ [1]^s$ such that $ \mathcal {F}_1(M)\cong \mathcal {F}$ if $ p=2$, and such that $ \mathcal {F}_1(M) \cong F^*(\mathcal {F})$ if $ p$ is odd. Here, $ F\colon \mathbb{P}^{r-1}\to \mathbb{P}^{r-1}$ is the Frobenius map. We prove that the theorem cannot be improved if $ p$ is odd, because if $ M$ is any module of stable constant Jordan type $ [1]^s$, then the Chern numbers $ c_1,\dots ,c_{p-2}$ of $ \mathcal {F}_1(M)$ are divisible by $ p$.


References [Enhancements On Off] (What's this?)

  • 1. D. J. Benson, Modules of constant Jordan type and the Horrocks-Mumford bundle, preprint, 2008. MR 2376286 (2008j:20135)
  • 2. -, Modules of constant Jordan type with one non-projective block, Algebras and Representation Theory 13 (2010), 315-318. MR 2630123 (2011d:20015)
  • 3. I. N. Bernšteĭn, I. M. Gel$ '$fand, and S. I. Gel$ '$fand, Algebraic vector bundles on $ \mathbb{P}^n$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66-67. MR 509387 (80c:14010a)
  • 4. J. F. Carlson and E. M. Friedlander, Exact category of modules of constant Jordan type, Algebra, arithmetic and geometry: Manin Festschrift, Progr. in Math., vol. 269, Birkhäuser Verlag, Basel, 2009, pp. 267-290. MR 2641174 (2011c:16035)
  • 5. J. F. Carlson, E. M. Friedlander, and J. Pevtsova, Modules of constant Jordan type, J. Reine & Angew. Math. 614 (2008), 191-234. MR 2376286 (2008j:20135)
  • 6. J. F. Carlson, E. M. Friedlander, and A. A. Suslin, Modules for $ \mathbb{Z}/p \times \mathbb{Z}/p$, Comment. Math. Helv. 86 (2011), 609-657. MR 2803855
  • 7. E. M. Friedlander and J. Pevtsova, Constructions for infinitesimal group schemes, Trans. Amer. Math. Soc. 363 (2011), 6007-6061. MR 2817418 (2012d:14081)
  • 8. -, Generalized support varieties for finite group schemes, Documenta Math. Extra Volume Suslin (2010), 197-222. MR 2804254
  • 9. W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, Band 2, Springer-Verlag, Berlin/New York, 1984. MR 732620 (85k:14004)
  • 10. R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, Berlin/New York, 1977. MR 0463157 (57:3116)
  • 11. G. Horrocks and D. Mumford, A rank $ 2$ vector bundle on $ \mathbb{P}^4$ with $ 15,000$ symmetries, Topology 12 (1973), 63-81. MR 0382279 (52:3164)
  • 12. J. Rickard, Derived categories and stable equivalence, J. Pure & Applied Algebra 61 (1989), 303-317. MR 1027750 (91a:16004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20C20, 14F05

Retrieve articles in all journals with MSC (2010): 20C20, 14F05


Additional Information

Dave Benson
Affiliation: Department of Mathematics, University of Aberdeen, King’s College, Meston Building, Aberdeen AB24 3UE, Scotland

Julia Pevtsova
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195

DOI: https://doi.org/10.1090/S0002-9947-2012-05482-1
Received by editor(s): July 28, 2010
Received by editor(s) in revised form: September 28, 2010, and March 4, 2011
Published electronically: June 28, 2012
Additional Notes: The second author was partially supported by the NSF award DMS-0800940 and DMS-0953011
Article copyright: © Copyright 2012 David Benson and Julia Pevtsova

American Mathematical Society