Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

   

 

Pointwise dimension, entropy and Lyapunov exponents for $ C^1$ maps


Authors: Wen Huang and Pengfei Zhang
Journal: Trans. Amer. Math. Soc. 364 (2012), 6355-6370
MSC (2010): Primary 37C45; Secondary 37D25
Published electronically: July 11, 2012
MathSciNet review: 2958939
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a $ C^1$ self-map on a smooth Riemannian manifold $ M$, $ \mu $ be an $ f$-invariant ergodic Borel probability measure with a compact support $ \Lambda $ and $ \chi ^1_\mu >\cdots >\chi ^s_\mu $ be the Lyapunov exponents of $ \mu $ with respect to $ f$. If $ \chi ^1_\mu >0$, then we give a lower bound of the lower pointwise dimension of $ \mu $ in terms of $ \chi ^1_\mu $ and of the entropy $ h_\mu (f)$. Moreover, if $ Df_{\{\cdot \}}$ is non-degenerate on $ \Lambda $ and $ \chi ^s_\mu >0$, then we give an upper bound of the upper pointwise dimension of $ \mu $ in terms of $ \chi ^s_\mu $ and of the entropy $ h_\mu (f)$. Furthermore, if $ f$ is $ C^{1+\alpha }$ for some $ \alpha >0$, then the non-degeneracy condition can be removed.

As direct applications of the above results, we also give the corresponding lower and upper bounds of some classical characteristics of dimensional type of $ \mu $ in terms of the Lyapunov exponents and of the entropy $ h_\mu (f)$.


References [Enhancements On Off] (What's this?)

  • 1. M. Brin and A. Katok, On local entropy, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 30–38. MR 730261 (85c:58063), 10.1007/BFb0061408
  • 2. L. Barreira, Ya. Pesin and J. Schmeling, Dimension and product structure of hyperbolic measures, Ann. of Math. (2) 149 (1999), 755-783. MR 1709302 (2000f:37027)
  • 3. L. Barreira and C. Wolf, Pointwise dimension and ergodic decompositions, Ergod. Th. and Dynam. Sys. 26 (2006), 653-671. MR 2237462 (2007b:37040)
  • 4. J.P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Morden Phys. 57 (1985), no. 3, 617-656. MR 800052 (87d:58083a)
  • 5. J. Farmer, E. Ott and J. Yorke, The dimension of chaotic attractors, Physica 7D (1983), 153-180. MR 719051 (84m:58022)
  • 6. H. Hu, Dimensions of invariant sets of expanding maps, Comm. Math. Phys. 176 (1996), 307-320. MR 1374415 (96k:58135)
  • 7. J.F.C. Kingman, Subadditive Processes, Lecture Notes in Mathematics, Vol. 539, Springer, 1976. MR 0438477 (55:11388)
  • 8. B. Kalinin and V. Sadovshaya, On pointwise dimension of non-hyperbolic measures, Ergod. Th. and Dynam. Sys. 6 (2002), 1783-1801. MR 1944404 (2003j:37034)
  • 9. F. Ledrappier, Some relations between dimension and Lyapunov exponents, Comm. Math. Phys. 81 (1981), 229-238. MR 632758 (83b:58044)
  • 10. F. Ledrappier and M. Misiurewicz, Dimension of invariant measures of maps with exponent zero, Ergod. Th. and Dynam. Sys. 5 (1985), 595-610. MR 829860 (87j:58058)
  • 11. F. Ledrappier and L.S. Young, The metric entropy of diffeomorphisms. Part $ 2$; Relation between entropy, exponents and dimension, Ann. Math. 122 (1985), 540-574. MR 819557 (87i:58101b)
  • 12. R. Mañé, A proof of Pesin's formula, Ergod. Th. and Dynam. Sys. 1 (1981), 95-102. MR 627789 (83b:58042)
  • 13. R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical Systems, Valparaiso (1986) 86-117, Lecture Notes in Math., Vol. 1331, Springer, Berlin, 1988. MR 961095 (90j:58073)
  • 14. A. Manning, The dimensions of the maximal measure for a polynomial map, Ann. Math. 119 (1984), 425-430. MR 740898 (85i:58068)
  • 15. V.I. Oseledets, A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems, Tran. Moscow Math. Soc. 19 (1968), 197-221.
  • 16. Ya. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, Chicago University Press, 1997. MR 1489237 (99b:58003)
  • 17. D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat. 9 (1978), 83-87. MR 516310 (80f:58026)
  • 18. P. Walters, An Introducion to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer-Verlag, 1981. MR 648108 (84e:28017)
  • 19. L.S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. and Dynam. Sys. 2 (1982), 109-124. MR 684248 (84h:58087)
  • 20. L.S. Young, Ergodic theory of attractors, Proc. ICM (Zurich, 1994), Birkhauser, Basel, 1995, 1230-1237. MR 1404024 (98b:58101)
  • 21. L.S. Young, Ergodic theory of differentiable dynamical systems, Real and Complex Dynamical Systems (B. Branner and P. Hjorth, eds.), Kluwer Acad. Publ., 1995, 293-336. MR 1351527 (96h:58101)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37C45, 37D25

Retrieve articles in all journals with MSC (2010): 37C45, 37D25


Additional Information

Wen Huang
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei Anhui 230026, People’s Republic of China
Email: wenh@mail.ustc.edu.cn

Pengfei Zhang
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei Anhui 230026, People’s Republic of China
Email: pfzhang5@mail.ustc.edu.cn

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05527-9
Keywords: Pointwise dimension, local entropy, Lyapunov exponents, ergodic measures
Received by editor(s): August 30, 2009
Received by editor(s) in revised form: November 30, 2010
Published electronically: July 11, 2012
Additional Notes: The first author was supported by the NSFC, the Fok Ying Tung Education Foundation, FANEDD (Grant 200520) and the Fundamental Research Funds for the Central Universities.
Article copyright: © Copyright 2012 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia