Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The non-commutative Yosida-Hewitt decomposition revisited


Authors: P. G. Dodds and B. de Pagter
Journal: Trans. Amer. Math. Soc. 364 (2012), 6425-6457
MSC (2010): Primary 46L52, 46L51; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9947-2012-05569-3
Published electronically: June 26, 2012
MathSciNet review: 2958942
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a new approach to the non-commutative Yosida-Hewitt decomposition is presented in the general setting of non-commutative symmetric spaces of $ \tau $-measurable operators affiliated with semi-finite von Neumann algebras. The principal theorem permits the systematic study of the spaces of normal and singular functionals in this general setting. These results are used to study the properties of elements of order continuous norm and of absolutely continuous norm.


References [Enhancements On Off] (What's this?)

  • 1. T. Andô, On fundamental properties of a Banach space with a cone, Pacific J. Math. 44 (1962), 1163-1169. MR 0150572 (27:568)
  • 2. A.M. Bikchentaev, The continuity of multiplication for two topologies associated with a semifinite von Neumann algebra, Lobachevskii J. Math. 14 (2004), 17-24. MR 2034258 (2005a:46130)
  • 3. V.I. Chilin and F.A. Sukochev, Weak convergence in non-commutative symmetric spaces, J. Operator Th. 31 (1994), 35-65. MR 1316983 (96e:46085)
  • 4. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984. MR 737004 (85i:46020)
  • 5. J. Dixmier, Les fonctionelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Annals of Math. 51 (1950), 387-408. MR 0033445 (11:441e)
  • 6. J. Dixmier, Von Neumann algebras, North-Holland Mathematical Library, Volume 27, North-Holland, Amsterdam, 1981. MR 641217 (83a:46004)
  • 7. P.G. Dodds, T.K. Dodds, B. de Pagter, Non-commutative Banach function spaces, Math. Z. 201 (1989), 583-597. MR 1004176 (90j:46054)
  • 8. P.G. Dodds, T.K. Dodds, B. de Pagter, A general Markus inequality, Proc. Centre Math. Anal. Austral. Nat. Univ. 24 (1989), 47-57. MR 1060110 (91i:46072)
  • 9. P.G. Dodds, T.K. Dodds and B. de Pagter, Weakly compact subsets of symmetric operator spaces, Math. Proc. Camb. Phil. Soc. 110 (1991), 169-182. MR 1104612 (93e:46074)
  • 10. P.G. Dodds, T.K. Dodds and B. de Pagter, Non-commutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993), 717-750. MR 1113694 (94a:46093)
  • 11. P.G. Dodds, T.K. Dodds, F.A. Sukochev, O.Ye. Tikhonov, Anon-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure, Positivity 9 (2005), 457-484. MR 2188531 (2006h:46062)
  • 12. P.G. Dodds and C. Lennard, Normality in trace ideals, J. Operator Th. 16 (1986), 127-145. MR 847335 (87k:47102)
  • 13. P.G. Dodds and B. de Pagter, Non-commutative Yosida-Hewitt theorems and singular functionals in symmetric spaces of $ \tau $-measurable operators, In: Vector Measures, Integration and Related Topics, Proc. of Conf. on ``Vector Measures, Integration and Related Topics'', Eichstätt, Sept. 2008, G.P. Curbera et. al. (Eds.), Operator Theory: Advances and Applications 201, Birkhäuser Verlag, Basel, 2010, pp. 183-198. MR 2743986
  • 14. Th. Fack and H. Kosaki, Generalized $ s$-numbers of $ \tau $-measurable operators, Pacific J. Math. 123 (1986), 269-300. MR 840845 (87h:46122)
  • 15. J. Grosberg and M. Krein, Sur la décomposition des fonctionelles en composantes positives, C.R. (Doklady) de l'Acad. Sci. de l'URSS 25 (1939), 723-726. MR 0002019 (1:338a)
  • 16. G.J.O. Jameson, Ordered Linear Spaces, Lecture Notes in Mathematics 141, Springer-Verlag, Berlin, 1970. MR 0438077 (55:10996)
  • 17. R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras, Volume I, Academic Press, New York-Orlando, 1983. MR 719020 (85j:46099)
  • 18. R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras, Volume II, Academic Press, New York-Orlando, 1983. MR 0859186 (88d:46106)
  • 19. S.G. Krein, Ju.I. Petunin and E.M. Semenov, Interpolation of Linear Operators, Transl. Math. Monographs, Vol. 54, Amer. Math. Soc., Providence, R.I., 1982. MR 649411 (84j:46103)
  • 20. W.A.J. Luxemburg, Banach Function Spaces, Thesis, Delft, 1955. MR 0072440 (17:285a)
  • 21. B. de Pagter, Non-commutative Banach function spaces, in: Positivity, Trends in Mathematics, 197-227 (editors: K. Boulabiar, G. Buskes, A. Triki), Birkhäuser Verlag, Basel, 2007. MR 2382219 (2009b:46129)
  • 22. Narcisse Randrianantoanina, Sequences in non-commutative $ L^{p}$-spaces, J. Operator Th. 48 (2002), 255-272. MR 1938797 (2003h:46093)
  • 23. S. Stratila and L. Zsidó, Lectures on von Neumann Algebras, Editura Abacus Press, 1979. MR 526399 (81j:46089)
  • 24. M. Takesaki, On the conjugate space of operator algebra, Tôhoku Math. J. 10 (1958), 194-203. MR 0100799 (20:7227)
  • 25. M. Takesaki, On the singularity of a positive linear functional on operator algebra, Proc. Japan. Acad. 35 (1959), 365-366. MR 0113153 (22:3991)
  • 26. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 548728 (81e:46038)
  • 27. M. Takesaki, Theory of Operator Algebras II, Springer-Verlag, Berlin-Heidelberg-New York, 2003. MR 1943006 (2004g:46079)
  • 28. M. Terp, $ L^{p}$ spaces associated with von Neumann algebras, Notes, Copenhagen Univ., 1981.
  • 29. K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math Soc. 72 (1952), 46-66. MR 0045194 (13:543b)
  • 30. A.C. Zaanen, Integration, North-Holland, Amsterdam, 1967. MR 0222234 (36:5286)
  • 31. A.C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam-New York-Oxford, 1983. MR 704021 (86b:46001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L52, 46L51, 46E30

Retrieve articles in all journals with MSC (2010): 46L52, 46L51, 46E30


Additional Information

P. G. Dodds
Affiliation: School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide 5001, Australia
Email: peter@csem.flinders.edu.au

B. de Pagter
Affiliation: Delft Institute of Applied Mathematics, Faculty EEMCS, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
Email: b.depagter@tudelft.nl

DOI: https://doi.org/10.1090/S0002-9947-2012-05569-3
Received by editor(s): May 3, 2010
Received by editor(s) in revised form: February 14, 2011
Published electronically: June 26, 2012
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society