Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

   

 

Scalar curvature and asymptotic Chow stability of projective bundles and blowups


Authors: Alberto Della Vedova and Fabio Zuddas
Journal: Trans. Amer. Math. Soc. 364 (2012), 6495-6511
MSC (2010): Primary 32Q15
Published electronically: June 8, 2012
MathSciNet review: 2958945
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The holomorphic invariants introduced by Futaki as obstruction to asymptotic Chow semistability are studied by an algebraic-geometric point of view and are shown to be the Mumford weights of suitable line bundles on the Hilbert scheme of $ \mathbb{P}^n$.

These invariants are calculated in two special cases. The first is a projective bundle $ \mathbb{P}(E)$ over a curve of genus $ g \geq 2$, and it is shown that it is asymptotically Chow polystable (with every polarization) if and only if the bundle $ E$ is slope polystable. This proves a conjecture of Morrison with the extra assumption that the involved polarization is sufficiently divisible. Moreover it implies that $ \mathbb{P}(E)$ is asymptotically Chow polystable (with every polarization) if and only if it admits a constant scalar curvature Kähler metric. The second case is a manifold blown up at points, and new examples of asymptotically Chow unstable constant scalar curvature Kähler classes are given.


References [Enhancements On Off] (What's this?)

  • 1. V. Apostolov, D. M. J. Calderbank, P. Gauduchon and C. W. Tønnesen-Friedman, Extremal Kähler metrics on projective bundles over a curve. arxiv:0905.0498v1 [math.DG].
  • 2. C. Arezzo and F. Pacard, Blowing up and desingularizing constant scalar curvature Kähler manifolds. Acta Math. 196 (2006), no. 2, 179-228. MR 2275832 (2007i:32018)
  • 3. C. Arezzo and F. Pacard, Blowing up Kähler manifolds with constant scalar curvature, II. Ann. of Math. (2) 170 (2009), no. 2, 685-738. MR 2552105 (2010m:32025)
  • 4. M. F. Atiyah and R. Bott, The moment map and equivariant cohomology. Topology 23 (1984), no. 1, 1-28. MR 721448 (85e:58041)
  • 5. N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators. Springer-Verlag, 2004. MR 2273508 (2007m:58033)
  • 6. S. K. Donaldson, Scalar curvature and projective embeddings I. J. Differential Geom. 59 (2001), no. 3, 479-522. MR 1916953 (2003j:32030)
  • 7. S. K. Donaldson, Scalar curvature and stability of toric varieties. J. Differential Geom. 59 (2002), no. 2, 289-349. MR 1988506 (2005c:32028)
  • 8. S. K. Donaldson, Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19 (2009), no. 1, 83-136. MR 2507220 (2010j:32041)
  • 9. A. Futaki, Asymptotic Chow semi-stability and integral invariants. Internat. J. Math. 15, no. 9 (2004), 967-979. MR 2106156 (2005g:32029)
  • 10. A. Futaki, Kähler-Einstein metrics and Integral Invariants. Lecture Notes in Mathematics 1314. Springer-Verlag, 1988. MR 947341 (90a:53053)
  • 11. A. Futaki, H. Ono and Y. Sano, Hilbert series and obstructions to asymptotic semistability. Adv. Math. 226 (2011), 254-284. MR 2735758
  • 12. A. Grothendieck, Éléments de géométrie algébrique III, part 2, Inst. Hautes Études Sci. Publ. Math. No. 17, 1963. MR 0163911 (29:1210)
  • 13. R. Hartshorne, Algebraic Geometry. Springer, 1977. MR 0463157 (57:3116)
  • 14. F. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves I: Preliminaries on ``det'' and ``Div''. Math. Scand. 39 (1976), no. 1. MR 0437541 (55:10465)
  • 15. C. Lebrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory. Geom. Funct. Anal. 4 (1994), no. 3, 298-336. MR 1274118 (95k:58041)
  • 16. T. Mabuchi, An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I. Invent. Math. 159 (2005), no. 2, 225-243. MR 2116275 (2005m:32047)
  • 17. T. Mabuchi, K-stability of constant scalar curvature polarization. arXiv:0812.4093v2 [math.DG].
  • 18. T. Mabuchi, Chow-stability and Hilbert-stability in Mumford's Geometric Invariant Theory. Osaka J. Math. 45 (2008), 833-846. MR 2468597 (2010b:14091)
  • 19. T. Mabuchi, A stronger concept of K-stability. arXiv:0910.4617v1 [math.DG].
  • 20. I. Morrison, Projective stability of ruled surfaces. Inventiones Math. 56 (1980), 269-304. MR 561975 (81c:14007)
  • 21. D. Mumford, Stability of projective varieties. L'enseignement mathématique XXIII (1977), no. 1-2, 39-110. MR 0450272 (56:8568)
  • 22. M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. (2) 82 (1965), no.3, 540-567. MR 0184252 (32:1725)
  • 23. H. Ono, Y. Sano and N. Yotsutani, An example of asymptotically Chow unstable manifolds with constant scalar curvature. arXiv:0906.3836v1.
  • 24. S. T. Paul and G. Tian, CM stability and the generalized Futaki invariant I. arXiv:math/
    0605278v5 [math.AG].
  • 25. J. Ross and R. Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics. J. Differential Geom. 72 (2006), no. 3, 429-466. MR 2219940 (2007c:32028)
  • 26. J. Ross and R. Thomas, A study of the Hilbert-Mumford criterion for the stability of projective varieties. J. Algebraic Geom. 16 (2007), no. 2, 201-255. MR 2274514 (2007k:14091)
  • 27. R. Seyyedali, Balanced metrics and Chow stability of projective bundles over Kähler manifolds. Duke Math. J. 153 (2010), no. 3, 573-605. MR 2667426
  • 28. J. Stoppa, K-stability of constant scalar curvature Kähler manifolds. Adv. Math. 221 (2009), no. 4, 1397-1408. MR 2518643 (2010d:32024)
  • 29. J. Stoppa, Unstable blowups. J. Algebraic Geom., 19 (2010), no. 1, 1-17. MR 2551756 (2011c:32042)
  • 30. G. Tian, Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130 (1997), no. 1, 1-37. MR 1471884 (99e:53065)
  • 31. G. Tian, Extremal metrics and geometric stability. Houston Math. J. 28 (2002), no. 1, 411-432. MR 1898198 (2003i:53062)
  • 32. S.-Y. Yau, Open problems in Geometry, in `Differential geometry: partial differential equations on manifolds' (Los Angeles, CA, 1990), Proc. Sympos. Pure Math. 54 (1993), part 1, 1-28. MR 1216573 (94k:53001)
  • 33. S. Zhang, Heights and reductions of semi-stable varieties. Compositio Math. 104 (1996), no. 1, 77-105. MR 1420712 (97m:14027)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32Q15

Retrieve articles in all journals with MSC (2010): 32Q15


Additional Information

Alberto Della Vedova
Affiliation: Department of Mathematics, Fine Hall, Princeton University, Princeton, New Jersey 08544 – and – Dipartimento di Matematica, Università degli Studi di Parma, Viale G. P. Usberti, 53/A, 43100 Parma Italy
Email: della@math.princeton.edu

Fabio Zuddas
Affiliation: Dipartimento di Matematica, Università degli Studi di Parma, Viale G. P. Usberti, 53/A, 43100 Parma Italy
Email: fabio.zuddas@unipr.it

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05587-5
Received by editor(s): November 15, 2010
Received by editor(s) in revised form: March 18, 2011
Published electronically: June 8, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia