Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 

 

An explicit Schilder type theorem for super-Brownian motions: Infinite initial measures


Author: Kai-Nan Xiang
Journal: Trans. Amer. Math. Soc. 364 (2012), 6513-6529
MSC (2010): Primary 60J68, 60F10, 60G57, 49-XX
Published electronically: June 27, 2012
MathSciNet review: 2958946
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove that an explicit Schilder type theorem for super-Brownian motions holds for infinite initial measures, which concludes a long-time attacking on a conjecture of Fleischmann, Gärtner and Kaj (1996).


References [Enhancements On Off] (What's this?)

  • 1. J. Bebernes and S. Bricher, Final time blowup profiles for semilinear parabolic equations via center manifold theory, SIAM J. Math. Anal. 23 (1992), no. 4, 852–869. MR 1166561, 10.1137/0523045
  • 2. Ben Arous, G.; Ledoux, M. Schilder's large deviation principle without topology. Pitman Research Notes in Math. Series 284 (1993), 107-121.
  • 3. Mireille Bousquet-Mélou, Rational and algebraic series in combinatorial enumeration, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 789–826. MR 2275707
  • 4. Cramér, H. Sur un nouveau théoème limite de la théorie de probabilités. Actualités Scientifiques et Industrielles, 736, 5-23. Colloque consacré à la théorie de probabilités, Vol. 3, Hermann, Paris, 1938.
  • 5. Donald A. Dawson, Klaus Fleischmann, and Luis G. Gorostiza, Stable hydrodynamic limit fluctuations of a critical branching particle system in a random medium, Ann. Probab. 17 (1989), no. 3, 1083–1117. MR 1009446
  • 6. Donald A. Dawson, Measure-valued Markov processes, École d’Été de Probabilités de Saint-Flour XXI—1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1–260. MR 1242575, 10.1007/BFb0084190
  • 7. Dawson, D. A.; Gärtner, J. Long time fluctuation of weakly interacting diffusions. Stochastics. 20 (1987), 247-308.
  • 8. Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, 2nd ed., Applications of Mathematics (New York), vol. 38, Springer-Verlag, New York, 1998. MR 1619036
  • 9. Jean-Dominique Deuschel and Daniel W. Stroock, Large deviations, Pure and Applied Mathematics, vol. 137, Academic Press, Inc., Boston, MA, 1989. MR 997938
  • 10. Boualem Djehiche and Ingemar Kaj, The rate function for some measure-valued jump processes, Ann. Probab. 23 (1995), no. 3, 1414–1438. MR 1349178
  • 11. Boualem Djehiche and Ingemar Kaj, A sample path large deviation principle for 𝐿²-martingale measure processes, Bull. Sci. Math. 123 (1999), no. 6, 467–499 (English, with English and French summaries). MR 1712674, 10.1016/S0007-4497(99)00107-4
  • 12. M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time. III, Comm. Pure Appl. Math. 29 (1976), no. 4, 389–461. MR 0428471
  • 13. J. J. Duistermaat and J. A. C. Kolk, Multidimensional real analysis. I. Differentiation, Cambridge Studies in Advanced Mathematics, vol. 86, Cambridge University Press, Cambridge, 2004. Translated from the Dutch by J. P. van Braam Houckgeest. MR 2121976
  • 14. E. B. Dynkin, Diffusions, superdiffusions and partial differential equations, American Mathematical Society Colloquium Publications, vol. 50, American Mathematical Society, Providence, RI, 2002. MR 1883198
  • 15. Alison M. Etheridge, An introduction to superprocesses, University Lecture Series, vol. 20, American Mathematical Society, Providence, RI, 2000. MR 1779100
  • 16. Fleischmann, K.; Gärtner, J.; Kaj, I. A Schilder type theorem for super-Brownian motion. Dept. Math. Uppsala Univ. Preprint No. 14, 1993.
  • 17. Klaus Fleischmann, Jürgen Gärtner, and Ingemar Kaj, A Schilder type theorem for super-Brownian motion, Canad. J. Math. 48 (1996), no. 3, 542–568. MR 1402327, 10.4153/CJM-1996-028-2
  • 18. Klaus Fleischmann and Ingemar Kaj, Large deviation probabilities for some rescaled superprocesses, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 4, 607–645 (English, with English and French summaries). MR 1302763
  • 19. M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1998. Translated from the 1979 Russian original by Joseph Szücs. MR 1652127
  • 20. Avner Friedman, Blow-up of solutions of nonlinear parabolic equations, Nonlinear diffusion equations and their equilibrium states, I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 12, Springer, New York, 1988, pp. 301–318. MR 956073, 10.1007/978-1-4613-9605-5_19
  • 21. Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
  • 22. Hiroshi Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1990. MR 1070361
  • 23. Jean-François Le Gall, Spatial branching processes, random snakes and partial differential equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1999. MR 1714707
  • 24. Zenghu Li, Measure-valued branching Markov processes, Probability and its Applications (New York), Springer, Heidelberg, 2011. MR 2760602
  • 25. Edwin Perkins, Dawson-Watanabe superprocesses and measure-valued diffusions, Lectures on probability theory and statistics (Saint-Flour, 1999) Lecture Notes in Math., vol. 1781, Springer, Berlin, 2002, pp. 125–324. MR 1915445
  • 26. Alexander Schied, Grosse Abweichungen für die Pfade der Super-Brownschen Bewegung, Bonner Mathematische Schriften [Bonn Mathematical Publications], 277, Universität Bonn, Mathematisches Institut, Bonn, 1995 (German). Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1994. MR 1386894
  • 27. A. Schied, Sample path large deviations for super-Brownian motion, Probab. Theory Related Fields 104 (1996), no. 3, 319–347. MR 1376341, 10.1007/BF01213684
  • 28. M. Schilder, Some asymptotic formulas for Wiener integrals, Trans. Amer. Math. Soc. 125 (1966), 63–85. MR 0201892, 10.1090/S0002-9947-1966-0201892-6
  • 29. Gordon Slade, Scaling limits and super-Brownian motion, Notices Amer. Math. Soc. 49 (2002), no. 9, 1056–1067. MR 1927455
  • 30. Michael Struwe, Variational methods, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 34, Springer-Verlag, Berlin, 2000. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1736116
  • 31. S. R. S. Varadhan, Large deviations, Ann. Probab. 36 (2008), no. 2, 397–419. MR 2393987, 10.1214/07-AOP348
  • 32. Juan J. L. Velázquez, Blow up for semilinear parabolic equations, Recent advances in partial differential equations (El Escorial, 1992), RAM Res. Appl. Math., vol. 30, Masson, Paris, 1994, pp. 131–145. MR 1266206
  • 33. Kai-Nan Xiang, An explicit Schilder-type theorem for super-Brownian motions, Comm. Pure Appl. Math. 63 (2010), no. 11, 1381–1431. MR 2683389, 10.1002/cpa.20335

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60J68, 60F10, 60G57, 49-XX

Retrieve articles in all journals with MSC (2010): 60J68, 60F10, 60G57, 49-XX


Additional Information

Kai-Nan Xiang
Affiliation: School of Mathematical Sciences, LPMC, Nankai University, Tianjin City, 300071, People’s Republic of China
Email: kainanxiang@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-2012-05680-7
Keywords: Large deviation, super-Brownian motion, calculus of variation.
Received by editor(s): March 18, 2011
Published electronically: June 27, 2012
Additional Notes: This project was partially supported by CNNSF (No.10971106)
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.