Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weighted norm inequalities for multilinear Fourier multipliers


Authors: Mai Fujita and Naohito Tomita
Journal: Trans. Amer. Math. Soc. 364 (2012), 6335-6353
MSC (2010): Primary 42B15, 42B20, 42B25
DOI: https://doi.org/10.1090/S0002-9947-2012-05700-X
Published electronically: June 26, 2012
MathSciNet review: 2958938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider weighted norm inequalities for multilinear Fourier multipliers. Our result can be understood as a multilinear version of the result by Kurtz and Wheeden.


References [Enhancements On Off] (What's this?)

  • 1. K. Andersen and R. John, Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math. 69 (1980), 19-31. MR 604351 (82b:42015)
  • 2. H. Bui, Weighted Besov and Triebel spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), 581-605. MR 676560 (84f:46038)
  • 3. H. Bui, M. Paluszyński and M. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), 219-246. MR 1397492 (97c:46040)
  • 4. R.R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1978), 1-185. MR 518170 (81b:47061)
  • 5. D. Cruz-Uribe, J. Martell and C. Pérez, Extrapolation from $ A_\infty $ weights and applications, J. Funct. Anal. 213 (2004), 412-439. MR 2078632 (2005g:42029)
  • 6. J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, Amer. Math. Soc., Providence, RI, 2001. MR 1800316 (2001k:42001)
  • 7. J. García-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., North-Holland, 1985. MR 807149 (87d:42023)
  • 8. L. Grafakos and Z. Si, The Hörmander multiplier theorem for multilinear operators, J. Reine Angew. Math., to appear.
  • 9. L. Grafakos and R. Torres, Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Amer. Math. Soc. 354 (2001), 1153-1176. MR 1867376 (2002i:42024)
  • 10. L. Grafakos and R. Torres, Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J. 51 (2002), 1261-1276. MR 1947875 (2003j:42020)
  • 11. G. Hu and D. Yang, A variant sharp estimate for multilinear singular integral operators, Studia Math. 141 (2000), 25-42. MR 1782910 (2001g:42031)
  • 12. D. Kurtz, Littlewood-Paley and multipliers theorems on weighted $ L^p$ spaces, Trans. Amer. Math. Soc. 259 (1980), 235-254. MR 561835 (80f:42013)
  • 13. D. Kurtz and R. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343-362. MR 542885 (81j:42021)
  • 14. A. Lerner, S. Ombrosi, C. Pérez, R. Torres and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. in Math. 220 (2009), 1222-1264. MR 2483720 (2010f:42024)
  • 15. D. Maldonado and V. Naibo, Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl. 15 (2009), 218-261. MR 2500923 (2010b:42027)
  • 16. E.M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993. MR 1232192 (95c:42002)
  • 17. N. Tomita, A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal. 259 (2010), 2028-2044. MR 2671120 (2011h:42013)
  • 18. H. Triebel, Theory of Function Spaces, Birkhäuser, Basel-Boston-Stuttgart, 1983. MR 781540 (86j:46026)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42B15, 42B20, 42B25

Retrieve articles in all journals with MSC (2010): 42B15, 42B20, 42B25


Additional Information

Mai Fujita
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email: m-fujita@cr.math.sci.osaka-u.ac.jp

Naohito Tomita
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email: tomita@math.sci.osaka-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-2012-05700-X
Keywords: Multilinear Fourier multipliers, $A_{p}$-weights, Littlewood-Paley theory
Received by editor(s): June 23, 2010
Received by editor(s) in revised form: October 25, 2010
Published electronically: June 26, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society