Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 

 

On the preperiodic points of an endomorphism of $ \mathbb{P}^{1} \times\mathbb{P}^{1}$ which lie on a curve


Author: Arman Mimar
Journal: Trans. Amer. Math. Soc. 365 (2013), 161-193
MSC (2010): Primary 14G40; Secondary 37F10, 37P05, 37P30
Published electronically: August 23, 2012
MathSciNet review: 2984056
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a projective curve in $ \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $ \varphi $ be an endomorphism of degree $ \geq 2$ of $ \mathbb{P}^{1} \times \mathbb{P}^{1}$, given by two rational functions by $ \varphi (z,w)=(f(z),g(w))$ (i.e., $ \varphi =f \times g$), where all are defined over $ \overline {\mathbb{Q}}$. In this paper, we prove a characterization of the existence of an infinite intersection of $ X(\overline {\mathbb{Q}})$ with the set of $ \varphi $-preperiodic points in $ \mathbb{P}^{1} \times \mathbb{P}^{1}$, by means of a binding relationship between the two sets of preperiodic points of the two rational functions $ f$ and $ g$, in their respective $ \mathbb{P}^{1}$-components. In turn, taking limits under the characterization of the Julia set of a rational function as the derived set of its preperiodic points, we obtain the same relationship between the respective Julia sets $ \mathcal {J}(f)$ and $ \mathcal {J}(g)$ as well. We then find various sufficient conditions on the pair $ (X,\varphi )$ and often on $ \varphi $ alone, for the finiteness of the set of $ \varphi $-preperiodic points of $ X(\overline {\mathbb{Q}})$. The finiteness criteria depend on the rational functions $ f$ and $ g$, and often but not always, on the curve. We consider in turn various properties of the Julia sets of $ f$ and $ g$, as well as their interactions, in order to develop such criteria. They include: topological properties, symmetry groups as well as potential theoretic properties of Julia sets.


References [Enhancements On Off] (What's this?)

  • 1. M. Baker, L. DeMarco, Preperiodic points and unlikely intersections, Preprint, arXiv:0911.0918v2 [math.DS].
  • 2. Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089
  • 3. Alan F. Beardon, Continued fractions, discrete groups and complex dynamics, Comput. Methods Funct. Theory 1 (2001), no. 2, 535–594. MR 1941142, 10.1007/BF03321006
  • 4. A. F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722–736. MR 0199385
  • 5. F.A. Bogomolov, Points of finite order on an abelian variety, Math. USSR Izv., 17 (1981), 55-72.
  • 6. Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215–235 (French). MR 2244803, 10.1515/CRELLE.2006.049
  • 7. A. Chambert-Loir, Arithmetical properties of dynamical systems defined by polynomials, Clay Mathematical Institute, Summer school on Arithmetic Geometry, Göttingen, (2006).
  • 8. A. Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Preprint, arXiv:1001.2517 (2009).
  • 9. Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, 10.1007/BF02392534
  • 10. Peter Doyle and Curt McMullen, Solving the quintic by iteration, Acta Math. 163 (1989), no. 3-4, 151–180. MR 1032073, 10.1007/BF02392735
  • 11. R. Dvornicich and U. Zannier, Cyclotomic Diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps), Duke Math. J. 139 (2007), no. 3, 527–554. MR 2350852, 10.1215/S0012-7094-07-13934-6
  • 12. A. È. Erëmenko, Some functional equations connected with the iteration of rational functions, Algebra i Analiz 1 (1989), no. 4, 102–116 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 4, 905–919. MR 1027462
  • 13. K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
  • 14. Alexandre Freire, Artur Lopes, and Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62. MR 736568, 10.1007/BF02584744
  • 15. O. Frostman, Potentiel d'équilibre et capacités des ensembles avec quelques applications à la théorie des fonctions, Medd. Lund. Univ. Mat. Sem., 3 (1935), 1-118.
  • 16. V. Garber, On the iteration of rational functions, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 497–505. MR 0492197
  • 17. Dragos Ghioca and Thomas J. Tucker, Proof of a dynamical Bogomolov conjecture for lines under polynomial actions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 937–942. MR 2566560, 10.1090/S0002-9939-09-10182-X
  • 18. Michael-R. Herman, Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France 112 (1984), no. 1, 93–142 (French, with English summary). MR 771920
  • 19. Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608
  • 20. Gaston Julia, Mémoire sur la permutabilité des fractions rationnelles, Ann. Sci. École Norm. Sup. (3) 39 (1922), 131–215 (French). MR 1509242
  • 21. N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027
  • 22. G. M. Levin, Symmetries on Julia sets, Mat. Zametki 48 (1990), no. 5, 72–79, 159 (Russian); English transl., Math. Notes 48 (1990), no. 5-6, 1126–1131 (1991). MR 1092156, 10.1007/BF01236299
  • 23. G. M. Levin, Letter to the editors: “Symmetries on Julia sets” [Mat. Zametki 48 (1990), no. 5, 72–79; MR1092156 (92e:30015)], Mat. Zametki 69 (2001), no. 3, 479–480 (Russian); English transl., Math. Notes 69 (2001), no. 3-4, 432–433. MR 1846845, 10.1023/A:1010299912212
  • 24. M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385. MR 741393, 10.1017/S0143385700002030
  • 25. Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, 10.1007/BF02584743
  • 26. John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
  • 27. A. Mimar, On the preperiodic points of an endomorphism of $ \mathbb{P}^{1} \times \mathbb{P}^{1}$ which lie on a curve, Ph.D. Dissertation, Columbia University (1997).
  • 28. C. Petsche, L. Szpiro, and T. Tucker, A dynamical pairing between two rational maps, Preprint, November 8, 2009.
  • 29. Norbert Steinmetz, Rational iteration, de Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235
  • 30. Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766
  • 31. T. Radó, Zur Theorie der mehrdeutigen konformen Abbildungen, Acta Sci. Math. (Szeged), 1 (1922), 55-64.
  • 32. Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407
  • 33. W.F. Thurston, On the combinatorics and dynamics of iterated rational maps, Preprint, Princeton University, 1985.
  • 34. M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898
  • 35. X. Yuan, S. Zhang. Calabi theorem and algebraic dynamics, Preprint, November 2009.
  • 36. Shouwu Zhang, Positive line bundles on arithmetic surfaces, Ann. of Math. (2) 136 (1992), no. 3, 569–587. MR 1189866, 10.2307/2946601
  • 37. Shouwu Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281–300. MR 1311351
  • 38. Shou-Wu Zhang, Distributions in algebraic dynamics, Surveys in differential geometry. Vol. X, Surv. Differ. Geom., vol. 10, Int. Press, Somerville, MA, 2006, pp. 381–430. MR 2408228, 10.4310/SDG.2005.v10.n1.a9

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14G40, 37F10, 37P05, 37P30

Retrieve articles in all journals with MSC (2010): 14G40, 37F10, 37P05, 37P30


Additional Information

Arman Mimar
Affiliation: Department of Mathematics, Polytechnic University of New York, 6 Metrotech Center, Brooklyn, New York 11201
Email: amimar@poly.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05557-7
Received by editor(s): April 17, 2010
Received by editor(s) in revised form: August 10, 2010, September 27, 2010, and January 11, 2011
Published electronically: August 23, 2012
Additional Notes: This work consists of the author’s dissertation at Columbia University (1997), previously unpublished. The author takes this opportunity to extend his thanks to advisors L. Szpiro and S. Zhang for their help and support during that endeavor.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.