Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the preperiodic points of an endomorphism of $\mathbb {P}^{1} \times \mathbb {P}^{1}$ which lie on a curve
HTML articles powered by AMS MathViewer

by Arman Mimar PDF
Trans. Amer. Math. Soc. 365 (2013), 161-193 Request permission

Abstract:

Let $X$ be a projective curve in $\mathbb {P}^{1} \times \mathbb {P}^{1}$ and $\varphi$ be an endomorphism of degree $\geq 2$ of $\mathbb {P}^{1} \times \mathbb {P}^{1}$, given by two rational functions by $\varphi (z,w)=(f(z),g(w))$ (i.e., $\varphi =f \times g$), where all are defined over $\overline {\mathbb {Q}}$. In this paper, we prove a characterization of the existence of an infinite intersection of $X(\overline {\mathbb {Q}})$ with the set of $\varphi$-preperiodic points in $\mathbb {P}^{1} \times \mathbb {P}^{1}$, by means of a binding relationship between the two sets of preperiodic points of the two rational functions $f$ and $g$, in their respective $\mathbb {P}^{1}$-components. In turn, taking limits under the characterization of the Julia set of a rational function as the derived set of its preperiodic points, we obtain the same relationship between the respective Julia sets $\mathcal {J}(f)$ and $\mathcal {J}(g)$ as well. We then find various sufficient conditions on the pair $(X,\varphi )$ and often on $\varphi$ alone, for the finiteness of the set of $\varphi$-preperiodic points of $X(\overline {\mathbb {Q}})$. The finiteness criteria depend on the rational functions $f$ and $g$, and often but not always, on the curve. We consider in turn various properties of the Julia sets of $f$ and $g$, as well as their interactions, in order to develop such criteria. They include: topological properties, symmetry groups as well as potential theoretic properties of Julia sets.
References
  • M. Baker, L. DeMarco, Preperiodic points and unlikely intersections, Preprint, arXiv:0911.0918v2 [math.DS].
  • Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
  • Alan F. Beardon, Continued fractions, discrete groups and complex dynamics, Comput. Methods Funct. Theory 1 (2001), no. 2, [On table of contents: 2002], 535–594. MR 1941142, DOI 10.1007/BF03321006
  • A. F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722–736. MR 199385, DOI 10.2307/2373151
  • F.A. Bogomolov, Points of finite order on an abelian variety, Math. USSR Izv., 17 (1981), 55–72.
  • Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215–235 (French). MR 2244803, DOI 10.1515/CRELLE.2006.049
  • A. Chambert-Loir, Arithmetical properties of dynamical systems defined by polynomials, Clay Mathematical Institute, Summer school on Arithmetic Geometry, Göttingen, (2006).
  • A. Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Preprint, arXiv:1001.2517 (2009).
  • Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
  • Peter Doyle and Curt McMullen, Solving the quintic by iteration, Acta Math. 163 (1989), no. 3-4, 151–180. MR 1032073, DOI 10.1007/BF02392735
  • R. Dvornicich and U. Zannier, Cyclotomic Diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps), Duke Math. J. 139 (2007), no. 3, 527–554. MR 2350852, DOI 10.1215/S0012-7094-07-13934-6
  • A. È. Erëmenko, Some functional equations connected with the iteration of rational functions, Algebra i Analiz 1 (1989), no. 4, 102–116 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 4, 905–919. MR 1027462
  • K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
  • Alexandre Freire, Artur Lopes, and Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62. MR 736568, DOI 10.1007/BF02584744
  • O. Frostman, Potentiel d’équilibre et capacités des ensembles avec quelques applications à la théorie des fonctions, Medd. Lund. Univ. Mat. Sem., 3 (1935), 1–118.
  • V. Garber, On the iteration of rational functions, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 497–505. MR 492197, DOI 10.1017/S0305004100055304
  • Dragos Ghioca and Thomas J. Tucker, Proof of a dynamical Bogomolov conjecture for lines under polynomial actions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 937–942. MR 2566560, DOI 10.1090/S0002-9939-09-10182-X
  • Michael-R. Herman, Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France 112 (1984), no. 1, 93–142 (French, with English summary). MR 771920, DOI 10.24033/bsmf.2002
  • Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608
  • Gaston Julia, Mémoire sur la permutabilité des fractions rationnelles, Ann. Sci. École Norm. Sup. (3) 39 (1922), 131–215 (French). MR 1509242, DOI 10.24033/asens.740
  • N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0
  • G. M. Levin, Symmetries on Julia sets, Mat. Zametki 48 (1990), no. 5, 72–79, 159 (Russian); English transl., Math. Notes 48 (1990), no. 5-6, 1126–1131 (1991). MR 1092156, DOI 10.1007/BF01236299
  • G. M. Levin, Letter to the editors: “Symmetries on Julia sets” [Mat. Zametki 48 (1990), no. 5, 72–79; MR1092156 (92e:30015)], Mat. Zametki 69 (2001), no. 3, 479–480 (Russian); English transl., Math. Notes 69 (2001), no. 3-4, 432–433. MR 1846845, DOI 10.1023/A:1010299912212
  • M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385. MR 741393, DOI 10.1017/S0143385700002030
  • Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI 10.1007/BF02584743
  • John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
  • A. Mimar, On the preperiodic points of an endomorphism of $\mathbb {P}^{1} \times \mathbb {P}^{1}$ which lie on a curve, Ph.D. Dissertation, Columbia University (1997).
  • C. Petsche, L. Szpiro, and T. Tucker, A dynamical pairing between two rational maps, Preprint, November 8, 2009.
  • Norbert Steinmetz, Rational iteration, De Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235, DOI 10.1515/9783110889314
  • Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
  • T. Radó, Zur Theorie der mehrdeutigen konformen Abbildungen, Acta Sci. Math. (Szeged), 1 (1922), 55–64.
  • Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
  • W.F. Thurston, On the combinatorics and dynamics of iterated rational maps, Preprint, Princeton University, 1985.
  • M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898
  • X. Yuan, S. Zhang. Calabi theorem and algebraic dynamics, Preprint, November 2009.
  • Shouwu Zhang, Positive line bundles on arithmetic surfaces, Ann. of Math. (2) 136 (1992), no. 3, 569–587. MR 1189866, DOI 10.2307/2946601
  • Shouwu Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281–300. MR 1311351
  • Shou-Wu Zhang, Distributions in algebraic dynamics, Surveys in differential geometry. Vol. X, Surv. Differ. Geom., vol. 10, Int. Press, Somerville, MA, 2006, pp. 381–430. MR 2408228, DOI 10.4310/SDG.2005.v10.n1.a9
Similar Articles
Additional Information
  • Arman Mimar
  • Affiliation: Department of Mathematics, Polytechnic University of New York, 6 Metrotech Center, Brooklyn, New York 11201
  • Email: amimar@poly.edu
  • Received by editor(s): April 17, 2010
  • Received by editor(s) in revised form: August 10, 2010, September 27, 2010, and January 11, 2011
  • Published electronically: August 23, 2012
  • Additional Notes: This work consists of the author’s dissertation at Columbia University (1997), previously unpublished. The author takes this opportunity to extend his thanks to advisors L. Szpiro and S. Zhang for their help and support during that endeavor.
  • © Copyright 2012 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 365 (2013), 161-193
  • MSC (2010): Primary 14G40; Secondary 37F10, 37P05, 37P30
  • DOI: https://doi.org/10.1090/S0002-9947-2012-05557-7
  • MathSciNet review: 2984056