Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Dimension of slices through the Sierpinski carpet


Authors: Anthony Manning and Károly Simon
Journal: Trans. Amer. Math. Soc. 365 (2013), 213-250
MSC (2010): Primary 28A80; Secondary 37H15, 37C45, 37B10, 37A30
DOI: https://doi.org/10.1090/S0002-9947-2012-05586-3
Published electronically: August 30, 2012
MathSciNet review: 2984058
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For Lebesgue typical $ (\theta ,a)$, the intersection of the Sierpinski carpet $ F$ with a line $ y=x\tan \theta +a$ has (if non-empty) dimension $ s-1$, where $ s=\log 8/\log 3=\dim _{\rm H}F$. Fix the slope $ \tan \theta \in \mathbb{Q} $. Then we shall show on the one hand that this dimension is strictly less than $ s-1$ for Lebesgue almost every $ a$. On the other hand, for almost every $ a$ according to the angle $ \theta $-projection $ \nu ^\theta $ of the natural measure $ \nu $ on $ F$, this dimension is at least $ s-1$. For any $ \theta $ we find a connection between the box dimension of this intersection and the local dimension of $ \nu ^\theta $ at $ a$.


References [Enhancements On Off] (What's this?)

  • 1. K. Athreya, P. Ney, Branching Processes, Springer, 1972. MR 0373040 (51:9242)
  • 2. P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, Birkhäuser, Basel, 1985. MR 886674 (88f:60013)
  • 3. K. Falconer, Fractal Geometry, 2nd ed., Wiley, 2003. MR 2118797 (2006b:28001)
  • 4. D.J. Feng, H.Hu, Dimension theory of iterated function systems, Communications on Pure and Applied Mathematics 62 (2009), 1435-1500. MR 2560042 (2010i:37049)
  • 5. D.J. Feng, N. Sidorov, Growth rate for beta-expansions, Monatsh. Math. 162 (2011), 41-60. MR 2747343
  • 6. H. Furstenberg, Non-commuting random products, Trans. Amer. Math. Soc. 108 (1963), 377-428. MR 0163345 (29:648)
  • 7. H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. MR 0213508 (35:4369)
  • 8. J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. MR 625600 (82h:49026)
  • 9. R. Kenyon, Y. Peres, Intersecting random translates of invariant Cantor sets. Invent. Math. 104 (1991), 601-629. MR 1106751 (92g:28018)
  • 10. A. S. Kravchenko, Completeness of the space of separable measures in the Kantorovich-Rubinshtein metric. Siberian Math. J. 47 (2006), no. 1, 68-76. MR 2215298 (2007b:28003)
  • 11. Qing-Hui Liu, Li-Feng Xi and Yan-Fen Zhao, Dimension of the intersection of the Sierpinski carpet with lines of rational slopes, Proc. Edinb. Math. Soc. 50 (2007), 411-428. MR 2334955 (2008i:28014)
  • 12. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge, 1995. MR 1333890 (96h:28006)
  • 13. J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. Lond. Math. Soc. 4 (1954), 257-302. MR 0063439 (16:121g)
  • 14. H-O. Peitgen, H. Jürgens and D. Saupe, Chaos and Fractals, Springer, New York, 2004. MR 2031217 (2004m:37061)
  • 15. Y. Peres, Domain of analytic continuation for the top Lyapunov exponent, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), 131-148. MR 1158741 (93g:60012)
  • 16. Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions, In Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998), Progr. Probab., Vol. 46, Birkhäuser, Basel, 39-65, 2000. MR 1785620 (2001m:42020)
  • 17. E. Seneta, Non-negative matrices and Markov chains, Springer, 1981. MR 2209438
  • 18. P. Walters, An introduction to Ergodic Theory, Springer, 1982. MR 648108 (84e:28017)
  • 19. L.S. Young, Dimension entropy and Lyapunov exponents, Ergodic Theory and Dynamical Systems 2 (1982), 109-124. MR 684248 (84h:58087)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 28A80, 37H15, 37C45, 37B10, 37A30

Retrieve articles in all journals with MSC (2010): 28A80, 37H15, 37C45, 37B10, 37A30


Additional Information

Anthony Manning
Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
Email: A.Manning@warwick.ac.uk

Károly Simon
Affiliation: Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91, Budapest, Hungary
Email: simon@math.bme.hu

DOI: https://doi.org/10.1090/S0002-9947-2012-05586-3
Keywords: Self-similar sets, Hausdorff dimension, dimension of fibres.
Received by editor(s): September 3, 2009
Received by editor(s) in revised form: January 24, 2011
Published electronically: August 30, 2012
Additional Notes: This research was supported by the Royal Society grant 2006/R4-IJP and the research of the second author by the OTKA Foundation #T 71693.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society