Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)



Primitive spherical systems

Author: P. Bravi
Journal: Trans. Amer. Math. Soc. 365 (2013), 361-407
MSC (2010): Primary 14M27; Secondary 05E10, 05E15
Published electronically: August 10, 2012
MathSciNet review: 2984062
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A spherical system is a combinatorial object, arising in the theory of wonderful varieties, defined in terms of a root system. All spherical systems can be obtained by means of some general combinatorial procedures (such as parabolic induction and wonderful fiber product) from the so-called primitive spherical systems. Here we classify the primitive spherical systems. As an application, we prove that the quotients of a spherical system are in correspondence with the so-called distinguished subsets of colors.

References [Enhancements On Off] (What's this?)

  • [Br07] P. Bravi, Wonderful varieties of type $ E$, Representation Theory, 11 (2007), 174-191. MR 2346359 (2008h:14046)
  • [BCF08] P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety, Adv.Math. 217 (2008), 2800-2821. MR 2397467 (2009a:14061)
  • [BCF10] P. Bravi, S. Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst.Fourier (Grenoble) 60 (2010), 641-681. MR 2667789
  • [BL11] P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type $ F_4$, J. Algebra 329 (2010), 4-51. MR 2769314
  • [BP05] P. Bravi, G. Pezzini, Wonderful varieties of type $ D$, Represent. Theory, 9 (2005), 578-637. MR 2183057 (2006g:14078)
  • [BP11] P. Bravi, G. Pezzini, A constructive approach to the classification of wonderful varieties, arXiv:1103.0380v1 .
  • [Bo] N. Bourbaki, Éléments de mathématique. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [CF08] S. Cupit-Foutou, Invariant Hilbert schemes and wonderful varieties, arXiv:0811.1567v2 .
  • [CF09] S. Cupit-Foutou, Wonderful varieties: a geometrical realization, arXiv:0907.2852v3 .
  • [Lo09] I.V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 No. 2 (2009), 315-343. MR 2495078 (2010c:14055)
  • [Lu01] D. Luna, Variétés sphériques de type $ A$, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161-226. MR 1896179 (2003f:14056)
  • [P03] G. Pezzini, Wonderful varieties of type $ C$, Ph.D. Thesis, Dipartimento di Matematica, Università La Sapienza, Rome, 2003.
  • [W96] B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), no. 4, 375-403. MR 1424449 (97k:14051)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14M27, 05E10, 05E15

Retrieve articles in all journals with MSC (2010): 14M27, 05E10, 05E15

Additional Information

P. Bravi
Affiliation: Dipartimento di Matematica, Università La Sapienza, P.le A. Moro 5, 00185 Roma, Italy

Keywords: Wonderful varieties, root systems.
Received by editor(s): July 19, 2010
Received by editor(s) in revised form: January 21, 2011, and April 4, 2011
Published electronically: August 10, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia