Sum formulas for local Gromov-Witten invariants of spin curves

Author:
Junho Lee

Journal:
Trans. Amer. Math. Soc. **365** (2013), 459-490

MSC (2010):
Primary 53D45; Secondary 14N35

Published electronically:
August 24, 2012

MathSciNet review:
2984064

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Holomorphic 2-forms on Kähler surfaces lead to ``local Gromov-Witten invariants'' of spin curves. This paper shows how to derive sum formulas for such local GW invariants from the sum formula for GW invariants of certain ruled surfaces. These sum formulas also verify the Maulik-Pandharipande formulas that were recently proved by Kiem and Li.

**[ACV]**Dan Abramovich, Alessio Corti, and Angelo Vistoli,*Twisted bundles and admissible covers*, Comm. Algebra**31**(2003), no. 8, 3547–3618. Special issue in honor of Steven L. Kleiman. MR**2007376**, 10.1081/AGB-120022434**[AC]**Enrico Arbarello and Maurizio Cornalba,*Calculating cohomology groups of moduli spaces of curves via algebraic geometry*, Inst. Hautes Études Sci. Publ. Math.**88**(1998), 97–127 (1999). MR**1733327****[C]**Maurizio Cornalba,*Moduli of curves and theta-characteristics*, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 560–589. MR**1082361****[FP]**C. Faber and R. Pandharipande,*Hodge integrals and Gromov-Witten theory*, Invent. Math.**139**(2000), no. 1, 173–199. MR**1728879**, 10.1007/s002229900028**[HM]**Joe Harris and Ian Morrison,*Moduli of curves*, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR**1631825****[IP1]**Eleny-Nicoleta Ionel and Thomas H. Parker,*Relative Gromov-Witten invariants*, Ann. of Math. (2)**157**(2003), no. 1, 45–96. MR**1954264**, 10.4007/annals.2003.157.45**[IP2]**Eleny-Nicoleta Ionel and Thomas H. Parker,*The symplectic sum formula for Gromov-Witten invariants*, Ann. of Math. (2)**159**(2004), no. 3, 935–1025. MR**2113018**, 10.4007/annals.2004.159.935**[KL1]**Y-H. Kiem and J. Li,*Gromov-Witten invariants of varieties with holomorphic -forms*, preprint, math.AG/07072986.**[KL2]**Young-Hoon Kiem and Jun Li,*Low degree GW invariants of spin surfaces*, Pure Appl. Math. Q.**7**(2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1449–1475. MR**2918169**, 10.4310/PAMQ.2011.v7.n4.a17**[KL3]**Young-Hoon Kiem and Jun Li,*Low degree GW invariants of surfaces II*, Sci. China Math.**54**(2011), no. 8, 1679–1706. MR**2824966**, 10.1007/s11425-011-4258-x**[KM]**M. Kontsevich and Yu. Manin,*Relations between the correlators of the topological sigma-model coupled to gravity*, Comm. Math. Phys.**196**(1998), no. 2, 385–398. MR**1645019**, 10.1007/s002200050426**[L]**Junho Lee,*Family Gromov-Witten invariants for Kähler surfaces*, Duke Math. J.**123**(2004), no. 1, 209–233. MR**2060027**, 10.1215/S0012-7094-04-12317-6**[Lo]**Eduard Looijenga,*Smooth Deligne-Mumford compactifications by means of Prym level structures*, J. Algebraic Geom.**3**(1994), no. 2, 283–293. MR**1257324****[LP1]**Junho Lee and Thomas H. Parker,*A structure theorem for the Gromov-Witten invariants of Kähler surfaces*, J. Differential Geom.**77**(2007), no. 3, 483–513. MR**2362322****[LP2]**J. Lee and T.H. Parker,*An obstruction bundle relating Gromov-Witten invariants of curves and Kähler surfaces*, preprint, arXiv:0909.3610.**[LT]**Jun Li and Gang Tian,*Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds*, Topics in symplectic 4-manifolds (Irvine, CA, 1996) First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998, pp. 47–83. MR**1635695****[MP]**D. Maulik and R. Pandharipande,*New calculations in Gromov-Witten theory*, Pure Appl. Math. Q.**4**(2008), no. 2, Special Issue: In honor of Fedor Bogomolov., 469–500. MR**2400883**, 10.4310/PAMQ.2008.v4.n2.a7**[RT1]**Yongbin Ruan and Gang Tian,*A mathematical theory of quantum cohomology*, J. Differential Geom.**42**(1995), no. 2, 259–367. MR**1366548****[RT2]**Yongbin Ruan and Gang Tian,*Higher genus symplectic invariants and sigma models coupled with gravity*, Invent. Math.**130**(1997), no. 3, 455–516. MR**1483992**, 10.1007/s002220050192**[T]**Loring W. Tu,*Hodge theory and the local Torelli problem*, Mem. Amer. Math. Soc.**43**(1983), no. 279, vi+64. MR**699239**, 10.1090/memo/0279

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
53D45,
14N35

Retrieve articles in all journals with MSC (2010): 53D45, 14N35

Additional Information

**Junho Lee**

Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Email:
junlee@mail.ucf.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-2012-05635-2

Received by editor(s):
May 26, 2009

Received by editor(s) in revised form:
January 7, 2010, September 28, 2010, and May 9, 2011

Published electronically:
August 24, 2012

Article copyright:
© Copyright 2012
American Mathematical Society