Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Moduli space theory for the Allen-Cahn equation in the plane

Authors: Manuel del Pino, Michał Kowalczyk and Frank Pacard
Journal: Trans. Amer. Math. Soc. 365 (2013), 721-766
MSC (2010): Primary 35B08, 35P99, 35Q80
Published electronically: August 9, 2012
MathSciNet review: 2995371
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study entire solutions of the Allen-Cahn equation $ \Delta u-F^{\prime }(u)=0$, where $ F$ is an even, bistable function. We are particularly interested in the description of the moduli space of solutions which have some special structure at infinity. The solutions we are interested in have their zero set asymptotic to $ 2k$, $ k\geq 2$ oriented affine half-lines at infinity and, along each of these affine half-lines, the solutions are asymptotic to the one-dimensional heteroclinic solution: such solutions are called multiple-end solutions, and their set is denoted by $ \mathcal M_{2k}$. The main result of our paper states that if $ u \in \mathcal M_{2k}$ is nondegenerate, then locally near $ u$ the set of solutions is a smooth manifold of dimension $ 2k$. This paper is part of a program whose aim is to classify all $ 2k$-ended solutions of the Allen-Cahn equation in dimension $ 2$, for $ k \geq 2$.

References [Enhancements On Off] (What's this?)

  • 1. M. Adler, On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-deVries type equations, Invent. Math. 50 (1978/79), no. 3, 219-248. MR 520927 (80i:58026)
  • 2. Francesca Alessio, Alessandro Calamai, and Piero Montecchiari, Saddle-type solutions for a class of semilinear elliptic equations, Adv. Differential Equations 12 (2007), no. 4, 361-380. MR 2305872 (2007m:35051)
  • 3. Nicholas D. Alikakos, Giorgio Fusco, and Vagelis Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, J. Differential Equations 126 (1996), no. 1, 106-167. MR 1382059 (97d:35100)
  • 4. Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983, Théorie et applications. [Theory and applications]. MR 697382 (85a:46001)
  • 5. Xavier Cabré and Joana Terra, Saddle-shaped solutions of bistable diffusion equations in all of $ \mathbb{R}^{2m}$, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 4, 819-843. MR 2538506
  • 6. Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338 (16,1022b)
  • 7. Ha Dang, Paul C. Fife, and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys. 43 (1992), no. 6, 984-998. MR 1198672 (94b:35041)
  • 8. Manuel del Pino, Michał Kowalczyk, Frank Pacard, and Juncheng Wei, Multiple-end solutions to the Allen-Cahn equation in $ \mathbb{R}^2$, J. Funct. Anal. 258 (2010), no. 2, 458-503. MR 2557944
  • 9. N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), no. 3, 481-491. MR 1637919 (99j:35049)
  • 10. Changfeng Gui, Hamiltonian identities for elliptic partial differential equations, J. Funct. Anal. 254 (2008), no. 4, 904-933. MR 2381198 (2009b:35112)
  • 11. -, Even symmetry of some entire solutions to the Allen-Cahn equation in two dimensions, Preprint (2011).
  • 12. Nick Korevaar, Rafe Mazzeo, Frank Pacard, and Richard Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math. 135 (1999), no. 2, 233-272. MR 1666838 (2001a:35055)
  • 13. Bertram Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math. 34 (1979), no. 3, 195-338. MR 550790 (82f:58045)
  • 14. Michał Kowalczyk and Yong Liu, Nondegeneracy of the saddle solution of the Allen-Cahn equation on the plane, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4319-4329. MR 2823077 (2012h:35185)
  • 15. R. Kusner, R. Mazzeo, and D. Pollack, The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal. 6 (1996), no. 1, 120-137. MR 1371233 (97b:58022)
  • 16. Robert B. Lockhart and Robert C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 3, 409-447. MR 837256 (87k:58266)
  • 17. Rafe Mazzeo and Daniel Pollack, Gluing and moduli for noncompact geometric problems, Geometric theory of singular phenomena in partial differential equations (Cortona, 1995), Sympos. Math., XXXVIII, Cambridge Univ. Press, Cambridge, 1998, pp. 17-51. MR 1702086 (2000i:53058)
  • 18. Rafe Mazzeo, Daniel Pollack, and Karen Uhlenbeck, Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc. 9 (1996), no. 2, 303-344. MR 1356375 (96f:53055)
  • 19. Jürgen Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system, Dynamical systems, theory and applications (Rencontres, BattelleRes. Inst., Seattle, Wash., 1974), Springer, Berlin, 1975, pp. 467-497. Lecture Notes in Phys., Vol. 38. MR 0455038 (56:13279)
  • 20. Arnold F. Nikiforov and Vasilii B. Uvarov, Special functions of mathematical physics, A unified introduction with applications, Translated from the Russian and with a preface by Ralph P. Boas, With a foreword by A. A. Samarskiĭ. Birkhäuser Verlag, Basel, 1988. MR 922041 (89h:33001)
  • 21. M. A. Olshanetsky and A. M. Perelomov, Explicit solutions of classical generalized Toda models, Invent. Math. 54 (1979), no. 3, 261-269. MR 553222 (80m:58018)
  • 22. Frank Pacard, Connected sum contruction in geometry and nonlinear analysis, Unpublished lecture notes, 2008.
  • 23. M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 6, 1241-1275. MR 1363002 (96j:35085)
  • 24. W. W. Symes, Systems of Toda type, inverse spectral problems, and representation theory, Invent. Math. 59 (1980), no. 1, 13-51. MR 575079 (81g:58019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35B08, 35P99, 35Q80

Retrieve articles in all journals with MSC (2010): 35B08, 35P99, 35Q80

Additional Information

Manuel del Pino
Affiliation: Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile

Michał Kowalczyk
Affiliation: Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile

Frank Pacard
Affiliation: Centre de Mathématiques Laurent Schwartz UMR-CNRS 7640, École Polytechnique, 91128 Palaiseau, France

Received by editor(s): September 6, 2010
Received by editor(s) in revised form: March 2, 2011
Published electronically: August 9, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society