Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 

 

Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field


Authors: Yaniv Almog, Bernard Helffer and Xing-Bin Pan
Journal: Trans. Amer. Math. Soc. 365 (2013), 1183-1217
MSC (2010): Primary 82D55, 35B25, 35B40, 35Q55
Published electronically: August 9, 2012
MathSciNet review: 3003262
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the linearization of the time-dependent Ginzburg-Landau system near the normal state. We assume that a constant magnetic field and an electric current are applied through the sample, which captures half of the plane, inducing thereby a linearly varying magnetic field. In the limit of small normal conductivity we prove that if the electric current is lower than some critical value, the normal state loses its stability. For currents stronger than this critical value, the normal state is stable. To obtain this stability result we analyze both the spectrum and the pseudo-spectrum of the linearized operator. The critical current tends, in this small conductivity limit, to another critical current which had been obtained for a reduced model which neglects magnetic field effects.


References [Enhancements On Off] (What's this?)

  • 1. M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions, Dover, 1972.
  • 2. J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971), 269–279. MR 0345551
  • 3. Y. Almog, The stability of the normal state of superconductors in the presence of electric currents, SIAM J. Math. Anal. 40 (2008), no. 2, 824–850. MR 2438788, 10.1137/070699755
  • 4. Yaniv Almog, Bernard Helffer, and Xing-Bin Pan, Superconductivity near the normal state under the action of electric currents and induced magnetic fields in ℝ², Comm. Math. Phys. 300 (2010), no. 1, 147–184. MR 2725185, 10.1007/s00220-010-1111-y
  • 5. Patricia Bauman, Hala Jadallah, and Daniel Phillips, Classical solutions to the time-dependent Ginzburg-Landau equations for a bounded superconducting body in a vacuum, J. Math. Phys. 46 (2005), no. 9, 095104, 25. MR 2171207, 10.1063/1.2012107
  • 6. S. J. Chapman, S. D. Howison, and J. R. Ockendon, Macroscopic models for superconductivity, SIAM Rev. 34 (1992), no. 4, 529–560. MR 1193011, 10.1137/1034114
  • 7. J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251–270. MR 0391792
  • 8. E. B. Davies, Wild spectral behaviour of anharmonic oscillators, Bull. London Math. Soc. 32 (2000), no. 4, 432–438. MR 1760807, 10.1112/S0024609300007050
  • 9. A. DOLGERT, T. BLUM, A. DORSEY, AND M. FOWLER, Nucleation and growth of the superconducting phase in the presence of a current, Phys. Rev. B, 57 (1998), 5432-5443.
  • 10. Qiang Du, Max D. Gunzburger, and Janet S. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Rev. 34 (1992), no. 1, 54–81. MR 1156289, 10.1137/1034003
  • 11. Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
  • 12. Søren Fournais and Bernard Helffer, Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston, Inc., Boston, MA, 2010. MR 2662319
  • 13. B. HELFFER, On pseudo-spectral problems related to a time dependent model in superconductivity with electric current, Confluentes Math., 3 (2) (2011), 237-251.
  • 14. B. I. IVLEV AND N. B. KOPNIN, Electric currents and resistive states in thin superconductors, Advances in Physics, 33 (1984), 47-114.
  • 15. Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617
  • 16. Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
  • 17. J. RUBINSTEIN AND P. STERNBERG, Formation and stability of phase slip centers in nonuniform wires with currents, Physica C-Superconductivity and Its Applications, 468 (2008), 260-263.
  • 18. J. RUBINSTEIN, P. STERNBERG, AND Q. MA, Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents, Phys. Rev. Lett., 99 (2007).
  • 19. Jacob Rubinstein, Peter Sternberg, and Kevin Zumbrun, The resistive state in a superconducting wire: bifurcation from the normal state, Arch. Ration. Mech. Anal. 195 (2010), no. 1, 117–158. MR 2564470, 10.1007/s00205-008-0188-3
  • 20. Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, 10.1090/S0273-0979-1982-15041-8
  • 21. A. G. SIVAKOV, A. M. GLUKHOV, A. N. OMELYANCHOUK, Y. KOVAL, P. M¨ULLER, AND A. V. USTINOV, Josephson behavior of phase-slip lines in wide superconducting strips, Phys. Rev. Lett., 91 (2003), art. no. 267001.
  • 22. M. TINKHAM, Introduction to Superconductivity, McGraw-Hill, 1996.
  • 23. D. Y. VODOLAZOV, F. M. PEETERS, L. PIRAUX, S. MATEFI-TEMPFLI, AND S. MICHOTTE, Current-voltage characteristics of quasi-one-dimensional superconductors: An s-shaped curve in the constant voltage regime, Phys. Rev. Lett., 91 (2003).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 82D55, 35B25, 35B40, 35Q55

Retrieve articles in all journals with MSC (2010): 82D55, 35B25, 35B40, 35Q55


Additional Information

Yaniv Almog
Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
Email: almog@math.lsu.edu

Bernard Helffer
Affiliation: Laboratoire de Mathématiques, Université Paris-Sud 11 et CNRS, Bât 425, 91 405 Orsay Cedex, France
Email: Bernard.Helffer@math.u-psud.fr

Xing-Bin Pan
Affiliation: Department of Mathematics and Center for PDE, East China Normal University, Shanghai 200062, People’s Republic of China
Email: xbpan@math.ecnu.edu.cn

DOI: https://doi.org/10.1090/S0002-9947-2012-05572-3
Keywords: Superconductivity, critical current, critical magnetic field
Received by editor(s): July 19, 2010
Received by editor(s) in revised form: February 20, 2011
Published electronically: August 9, 2012
Article copyright: © Copyright 2012 American Mathematical Society