On the existence of attractors
Authors:
Christian Bonatti, Ming Li and Dawei Yang
Journal:
Trans. Amer. Math. Soc. 365 (2013), 13691391
MSC (2010):
Primary 37B20, 37B25, 37C05, 37C10, 37C20, 37C29, 37C70, 37D05, 37D30, 37G25
Published electronically:
August 22, 2012
MathSciNet review:
3003268
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: On every compact manifold, we build a nonempty open set of such that, for every , every generic diffeomorphism has no topological attractors. On higherdimensional manifolds, one may require that has neither topological attractors nor topological repellers. Our examples have finitely many quasiattractors. For flows, we may require that these quasiattractors contain singular points. Finally we discuss alternative definitions of attractors which may be better adapted to generic dynamics.
 [ABS]
V.
S. Afraĭmovič, V.
V. Bykov, and L.
P. Sil′nikov, The origin and structure of the Lorenz
attractor, Dokl. Akad. Nauk SSSR 234 (1977),
no. 2, 336–339 (Russian). MR 0462175
(57 #2150)
 [Ar]
A. Araujo, Existência de atratores hiperbólicos para difeomorfismos de superficies, Ph.D. Thesis, IMPA, 1987.
 [As]
Masayuki
Asaoka, Hyperbolic sets exhibiting
𝐶¹persistent homoclinic tangency for higher
dimensions, Proc. Amer. Math. Soc.
136 (2008), no. 2,
677–686. MR 2358509
(2008k:37049), 10.1090/S0002993907091150
 [BKR]
R. Bamon, J. Kiwi, and J. Rivera, Wild Lorenz like attractors, preprint.
 [BC]
Christian
Bonatti and Sylvain
Crovisier, Récurrence et
généricité, Invent. Math. 158
(2004), no. 1, 33–104 (French, with English and French
summaries). MR
2090361 (2007b:37036), 10.1007/s0022200403681
 [BD]
Christian
Bonatti and Lorenzo
Díaz, On maximal transitive sets of generic
diffeomorphisms, Publ. Math. Inst. Hautes Études Sci.
96 (2002), 171–197 (2003). MR 1985032
(2007d:37017), 10.1007/s1024000300080
 [BDP]
C.
Bonatti, L.
J. Díaz, and E.
R. Pujals, A 𝐶¹generic dichotomy for diffeomorphisms:
weak forms of hyperbolicity or infinitely many sinks or sources, Ann.
of Math. (2) 158 (2003), no. 2, 355–418
(English, with English and French summaries). MR 2018925
(2007k:37032), 10.4007/annals.2003.158.355
 [BDV]
Christian
Bonatti, Lorenzo
J. Díaz, and Marcelo
Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of
Mathematical Sciences, vol. 102, SpringerVerlag, Berlin, 2005. A
global geometric and probabilistic perspective; Mathematical Physics, III.
MR
2105774 (2005g:37001)
 [BGV]
Christian
Bonatti, Nikolas
Gourmelon, and Thérèse
Vivier, Perturbations of the derivative along periodic orbits,
Ergodic Theory Dynam. Systems 26 (2006), no. 5,
1307–1337. MR 2266363
(2007i:37062), 10.1017/S0143385706000253
 [BLY]
C. Bonatti, M. Li, and D. Yang, Robustly chain transitive attractor with singularities of different indices, preprint, 2008.
 [BV]
Christian
Bonatti and Marcelo
Viana, SRB measures for partially hyperbolic systems whose central
direction is mostly contracting, Israel J. Math. 115
(2000), 157–193. MR 1749677
(2001j:37063a), 10.1007/BF02810585
 [Co]
Charles
Conley, Isolated invariant sets and the Morse index, CBMS
Regional Conference Series in Mathematics, vol. 38, American
Mathematical Society, Providence, R.I., 1978. MR 511133
(80c:58009)
 [GWZ]
Shengzhi
Zhu, Shaobo
Gan, and Lan
Wen, Indices of singularities of robustly transitive sets,
Discrete Contin. Dyn. Syst. 21 (2008), no. 3,
945–957. MR 2399444
(2009a:37065), 10.3934/dcds.2008.21.945
 [Gi]
Joel
C. Gibbons, Onedimensional basic sets in the
threesphere, Trans. Amer. Math. Soc. 164 (1972), 163–178.
MR
0292110 (45 #1197), 10.1090/S00029947197202921104
 [Gu]
J. Guckenheimer, A strange, strange attractor, The Hopf bifurcation theorems and its applications (Applied Mathematical Series, 19), SpringerVerlag, 1976, pp. 368381.
 [GuW]
John
Guckenheimer and R.
F. Williams, Structural stability of Lorenz attractors, Inst.
Hautes Études Sci. Publ. Math. 50 (1979),
59–72. MR
556582 (82b:58055a)
 [H]
Mike
Hurley, Attractors: persistence, and density
of their basins, Trans. Amer. Math. Soc.
269 (1982), no. 1,
247–271. MR
637037 (83c:58049), 10.1090/S00029947198206370377
 [LGW]
Ming
Li, Shaobo
Gan, and Lan
Wen, Robustly transitive singular sets via approach of an extended
linear Poincaré flow, Discrete Contin. Dyn. Syst.
13 (2005), no. 2, 239–269. MR 2152388
(2006b:37056), 10.3934/dcds.2005.13.239
 [Lo]
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmosph. Sci., 20 (1963), 130141.
 [Ma]
Ricardo
Mañé, An ergodic closing lemma, Ann. of Math.
(2) 116 (1982), no. 3, 503–540. MR 678479
(84f:58070), 10.2307/2007021
 [MM]
R.
Metzger and C.
Morales, Sectionalhyperbolic systems, Ergodic Theory Dynam.
Systems 28 (2008), no. 5, 1587–1597. MR 2449545
(2010g:37045), 10.1017/S0143385707000995
 [Mi]
John
Milnor, On the concept of attractor, Comm. Math. Phys.
99 (1985), no. 2, 177–195. MR 790735
(87i:58109a)
 [MP]
C.
A. Morales and M.
J. Pacifico, Lyapunov stability of 𝜔limit sets,
Discrete Contin. Dyn. Syst. 8 (2002), no. 3,
671–674. MR 1897874
(2003b:37024), 10.3934/dcds.2002.8.671
 [MPP1]
Carlos
Arnoldo Morales, Maria
José Pacífico, and Enrique
Ramiro Pujals, On 𝐶¹ robust singular transitive sets
for threedimensional flows, C. R. Acad. Sci. Paris Sér. I
Math. 326 (1998), no. 1, 81–86 (English, with
English and French summaries). MR 1649489
(99j:58183), 10.1016/S07644442(97)827176
 [MPP2]
C.
A. Morales, M.
J. Pacifico, and E.
R. Pujals, Robust transitive singular sets for 3flows are
partially hyperbolic attractors or repellers, Ann. of Math. (2)
160 (2004), no. 2, 375–432. MR 2123928
(2005k:37054), 10.4007/annals.2004.160.375
 [N1]
Sheldon
E. Newhouse, Nondensity of axiom 𝐴(𝑎) on
𝑆², Global Analysis (Proc. Sympos. Pure Math., Vol. XIV,
Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970,
pp. 191–202. MR 0277005
(43 #2742)
 [N2]
Sheldon
E. Newhouse, Diffeomorphisms with infinitely many sinks,
Topology 13 (1974), 9–18. MR 0339291
(49 #4051)
 [N3]
Sheldon
E. Newhouse, The abundance of wild hyperbolic sets and nonsmooth
stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ.
Math. 50 (1979), 101–151. MR 556584
(82e:58067)
 [P1]
Jacob
Palis, A global view of dynamics and a conjecture on the denseness
of finitude of attractors, Astérisque 261
(2000), xiii–xiv, 335–347 (English, with English and French
summaries). Géométrie complexe et systèmes dynamiques
(Orsay, 1995). MR 1755446
(2001d:37025)
 [P2]
J.
Palis, A global perspective for nonconservative dynamics,
Ann. Inst. H. Poincaré Anal. Non Linéaire 22
(2005), no. 4, 485–507 (English, with English and French
summaries). MR
2145722 (2006b:37037), 10.1016/j.anihpc.2005.01.001
 [P3]
J.
Palis, Open questions leading to a global perspective in
dynamics, Nonlinearity 21 (2008), no. 4,
T37–T43. MR 2399817
(2009i:37003), 10.1088/09517715/21/4/T01
 [PP]
Fifty problems in dynamical systems, Dynamical
systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical
Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on
his fiftieth birthday), Springer, Berlin, 1975, pp. 345–353.
Lecture Notes in Math., Vol. 468. MR 0646829
(58 #31134)
 [Pl]
R.
V. Plykin, Hyperbolic attractors of diffeomorphisms, Uspekhi
Mat. Nauk 35 (1980), no. 3(213), 94–104
(Russian). International Topology Conference (Moscow State Univ., Moscow,
1979). MR
580625 (82k:58081)
 [PS]
Enrique
R. Pujals and Martín
Sambarino, Homoclinic tangencies and hyperbolicity for surface
diffeomorphisms, Ann. of Math. (2) 151 (2000),
no. 3, 961–1023. MR 1779562
(2001m:37057), 10.2307/121127
 [PV]
J.
Palis and M.
Viana, High dimension diffeomorphisms displaying infinitely many
periodic attractors, Ann. of Math. (2) 140 (1994),
no. 1, 207–250. MR 1289496
(95g:58140), 10.2307/2118546
 [Sh]
M. Shub, Topological transitive diffeomorphisms in , Lecture Notes in Math. Vol. 206, Springer Verlag, 1971.
 [Sm]
S.
Smale, Differentiable dynamical
systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 0228014
(37 #3598), 10.1090/S000299041967117981
 [T]
René
Thom, Structural stability and morphogenesis, W. A. Benjamin,
Inc., Reading, Mass.LondonAmsterdam, 1976. An outline of a general theory
of models; Translated from the French by D. H. Fowler; With a foreword by
C. H. Waddington; Second printing. MR 0488156
(58 #7722b)
 [W]
Lan
Wen, Homoclinic tangencies and dominated splittings,
Nonlinearity 15 (2002), no. 5, 1445–1469. MR 1925423
(2003f:37055), 10.1088/09517715/15/5/306
 [Y]
J. Yang, Lyapunov stable chain recurrent class, preprint, 2007.
 [ABS]
 V. Afraĭmovič, V. Bykov, and L. Sil'nikov, The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR, 234 (1977), 336339. MR 0462175 (57:2150)
 [Ar]
 A. Araujo, Existência de atratores hiperbólicos para difeomorfismos de superficies, Ph.D. Thesis, IMPA, 1987.
 [As]
 M. Asaoka, Hyperbolic sets exhibiting persistent homoclinic tangency for higher dimensions, Proc. Amer. Math. Soc., 136 (2008), no. 2, 677686. MR 2358509 (2008k:37049)
 [BKR]
 R. Bamon, J. Kiwi, and J. Rivera, Wild Lorenz like attractors, preprint.
 [BC]
 C. Bonatti and S. Crovisier, Récurrence et généricité (French), Invent. Math., 158 (2004), 33104. MR 2090361 (2007b:37036)
 [BD]
 C. Bonatti and L. Díaz, On maximal transitive sets of generic diffeomorphisms, Inst. Hautes études Sci. Publ. Math., 96 (2002), 171197. MR 1985032 (2007d:37017)
 [BDP]
 C. Bonatti, L. Diaz, and E. Pujals, A generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., 158 (2003), 355418. MR 2018925 (2007k:37032)
 [BDV]
 C. Bonatti, L. Diaz, and and M. Viana, Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III. SpringerVerlag, Berlin, 2005, xviii+384 pp. MR 2105774 (2005g:37001)
 [BGV]
 C. Bonatti, N. Gourmelon and T. Vivier, Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, 26 (2006), 13071337. MR 2266363 (2007i:37062)
 [BLY]
 C. Bonatti, M. Li, and D. Yang, Robustly chain transitive attractor with singularities of different indices, preprint, 2008.
 [BV]
 C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2002), 157193. MR 1749677 (2001j:37063a)
 [Co]
 C. Conley, Isolated invariant sets and Morse index, CBMS Regional Conference Series in Mathematics, 38, AMS Providence, R.I., 1978. MR 511133 (80c:58009)
 [GWZ]
 S. Gan, L. Wen, and S. Zhu, Indices of singularities of robustly transitive sets, Disc. Cont. Dynam. Syst., 21 (2008), 945957. MR 2399444 (2009a:37065)
 [Gi]
 J. C. Gibbons, Onedimensional basic sets in the threesphere, Transactions of the American Mathematical Society, 164 (1972), 163178. MR 0292110 (45:1197)
 [Gu]
 J. Guckenheimer, A strange, strange attractor, The Hopf bifurcation theorems and its applications (Applied Mathematical Series, 19), SpringerVerlag, 1976, pp. 368381.
 [GuW]
 J. Guckenheimer and R. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 5972. MR 556582 (82b:58055a)
 [H]
 M. Hurley, Attractors: Persistence, and density of their basins, Trans. Am. Math. Soc., 269 (1982), 247271. MR 637037 (83c:58049)
 [LGW]
 M. Li, S. Gan, and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst., 13 (2005), 239269. MR 2152388 (2006b:37056)
 [Lo]
 E. N. Lorenz, Deterministic nonperiodic flow, J. Atmosph. Sci., 20 (1963), 130141.
 [Ma]
 R. Mañé, An ergodic closing lemma, Ann. Math., 116 (1982), 503540. MR 678479 (84f:58070)
 [MM]
 R. Metzger and C. Morales, Sectionalhyperbolic systems, Ergodic Theory Dynam. Systems, 28 (2008), no. 5, 15871597. MR 2449545 (2010g:37045)
 [Mi]
 J. Milnor, On the concept of attractor, Commum. Math. Phys., 99 (1985), 177195. MR 790735 (87i:58109a)
 [MP]
 C. Morales and M. Pacifico, Lyapunov stability of limit sets, Disc. Cont. Dyn. Sys., 8 (2002), 671674. MR 1897874 (2003b:37024)
 [MPP1]
 C. Morales, M. Pacifico, and E. Pujals, On robust singular transitive sets for threedimensional flows, C. R. Acad. Sci. Paris, 326 (1998), 8186. MR 1649489 (99j:58183)
 [MPP2]
 C. Morales, M. Pacifico, and E. Pujals, Robust transitive singular sets for 3flows are partially hyperbolic attractors or repellers, Ann. of Math., 160 (2004), 375432. MR 2123928 (2005k:37054)
 [N1]
 S. Newhouse, Nondensity of axiom on , Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 191202. MR 0277005 (43:2742)
 [N2]
 S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 918. MR 0339291 (49:4051)
 [N3]
 S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 101151. MR 556584 (82e:58067)
 [P1]
 J. Palis, A global view of dynamics and a conjecture of the denseness of finitude of attractors, Astérisque, 261 (2000), 335347. MR 1755446 (2001d:37025)
 [P2]
 J. Palis, A global perspective for nonconservative dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485507. MR 2145722 (2006b:37037)
 [P3]
 J. Palis, Open questions leading to a global perspective in dynamics, Nonlinearity, 21 (2008), 3743. MR 2399817 (2009i:37003)
 [PP]
 J. Palis and C. Pugh, Fifty problems in dynamical systems, Lect. Notes Math., 468 (1975), 345353, SpringerVerlag. MR 0646829 (58:31134)
 [Pl]
 R. V. Plykin, Hyperbolic attractors of diffeomorphisms, Usp. Math. Nauk, 35 (1980), no. 3, 94104. [English Transl.: Russ. Math. Survey, 35 (1980), no. 3, 109121.] MR 580625 (82k:58081)
 [PS]
 E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. Math., 151(2000), 9611023. MR 1779562 (2001m:37057)
 [PV]
 J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math., 140 (1994), 207250. MR 1289496 (95g:58140)
 [Sh]
 M. Shub, Topological transitive diffeomorphisms in , Lecture Notes in Math. Vol. 206, Springer Verlag, 1971.
 [Sm]
 S. Smale, Differentiable dynamical systems, Bull. Amer. Math.Soc., 73 (1967), 747817. MR 0228014 (37:3598)
 [T]
 R. Thom, Structually stability and morphogenesis, Benjamin, Reading, Mass., 1976. MR 0488156 (58:7722b)
 [W]
 L. Wen, Homoclinic tangencies and dominated splittings, Nonlinearity, 15 (2002), 14451469. MR 1925423 (2003f:37055)
 [Y]
 J. Yang, Lyapunov stable chain recurrent class, preprint, 2007.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
37B20,
37B25,
37C05,
37C10,
37C20,
37C29,
37C70,
37D05,
37D30,
37G25
Retrieve articles in all journals
with MSC (2010):
37B20,
37B25,
37C05,
37C10,
37C20,
37C29,
37C70,
37D05,
37D30,
37G25
Additional Information
Christian Bonatti
Affiliation:
Institut de Mathématiques de Bourgogne, Université de Bourgogne, Dijon 21004, France
Email:
bonatti@ubourgogne.fr
Ming Li
Affiliation:
School of Mathematical Sciences, Nankai University, Tianjin 300071, People’s Republic of China
Email:
limingmath@nankai.edu.cn
Dawei Yang
Affiliation:
School of Mathematics, Jilin University, Changchun 130000, People’s Republic of China
Email:
yangdw1981@gmail.com
DOI:
http://dx.doi.org/10.1090/S000299472012056443
Received by editor(s):
March 20, 2010
Received by editor(s) in revised form:
April 15, 2011
Published electronically:
August 22, 2012
Additional Notes:
This work was done during the stays of the second and third authors at the IMB, Université de Bourgogne, and they thank the IMB for its warm hospitality. The second author was supported by a postdoctoral grant of the Région Bourgogne, and the third author was supported by CSC of Chinese Education Ministry. This is a part of the third author’s Ph.D. thesis at Peking University.
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
