Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Calabi-Yau equation on 4-manifolds over 2-tori


Authors: A. Fino, Y.Y. Li, S. Salamon and L. Vezzoni
Journal: Trans. Amer. Math. Soc. 365 (2013), 1551-1575
MSC (2010): Primary 53C25, 35J60, 53D35
DOI: https://doi.org/10.1090/S0002-9947-2012-05692-3
Published electronically: October 1, 2012
MathSciNet review: 3003274
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper pursues the study of the Calabi-Yau equation on certain symplectic non-Kähler 4-manifolds, building on a key example of Tosatti and Weinkove in which more general theory had proved less effective. Symplectic 4-manifolds admitting a 2-torus fibration over a 2-torus base $ \mathbb{T}^2$ are modelled on one of three solvable Lie groups. Having assigned an invariant almost-Kähler structure and a volume form that effectively varies only on $ \mathbb{T}^2$, one seeks a symplectic form with this volume. Our approach simplifies the previous analysis of the problem and establishes the existence of solutions in various other cases.


References [Enhancements On Off] (What's this?)

  • 1. E. Abbena, An example of an almost Kähler manifold which is not Kählerian, Boll. Un. Mat. Ital. (6) 3-A (1984), no. 3, 383-392. MR 769169 (86a:53036)
  • 2. M. Abreu, R. Sena-Dias, Scalar-flat Kähler metrics on non-compact symplectic toric 4-manifolds, arXiv:0910.5466
  • 3. L. Auslander, J. Brezin, Translation-invariant subspaces in $ L^2$ of a compact nilmanifold. I, Invent. Math. 20 (1973), 1-14. MR 0322100 (48:464)
  • 4. C. Bock, On low-dimensional solvmanifolds, arXiv:0903.2926
  • 5. S. K. Donaldson, Two-forms on four-manifolds and elliptic equations. Inspired by S. S. Chern, 153-172, Nankai Tracts Math. 11, World Scientific, Hackensack NJ, 2006. MR 2313334 (2008c:53090)
  • 6. D. V. Egorov, Theta functions on $ T^2$-bundles over $ T^2$ with the zero Euler class, Siberian Math. J. 50 (2009), no. 4, 647-657. MR 2583619 (2011c:32037)
  • 7. R. O. Filipkiewicz, Four-dimensional geometries, Ph.D. thesis, University of Warwick, 1984.
  • 8. A. Fino, H. Pedersen, Y.-S. Poon, M. W. Sørensen, Neutral Calabi-Yau structures on Kodaira manifolds, Comm. Math. Phys. 248 (2004), no. 2, 255-268. MR 2073135 (2005d:32044)
  • 9. H. Geiges, Symplectic structures on $ T^2$-bundles over $ T^2$, Duke Math. J. 67 (1992), 539-555. MR 1181312 (93i:57036)
  • 10. E. Ghys, Knots and dynamics. International Congress of Mathematicians. Vol I, 247-277, European Math. Soc., Zürich, 2007. MR 2334193 (2008k:37001)
  • 11. J. A. Hillman, Four-manifolds, geometries and knots, Geometry & Topology Monographs 5. Mathematical Sciences Publishers, Berkeley CA, 2002. MR 1943724 (2003m:57047)
  • 12. N. J. Hitchin, The moduli space of special Lagrangian sub-manifolds, Annali Scuola Norm. Sup. Pisa 25 (1997), 503-515. MR 1655530 (2000c:32075)
  • 13. G. Ketsetzis, S. Salamon, Complex structures on the Iwasawa manifold, Adv. Geom. 4 (2004), no. 2, 165-179. MR 2055676 (2005g:22008)
  • 14. W. D. Kirwin, A. Uribe, Theta functions on the Kodaira-Thurston manifold, Trans. Amer. Math. Soc. 362 (2010), no. 2, 897-932. MR 2551510 (2011d:53228)
  • 15. K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798. MR 0187255 (32:4708)
  • 16. Y. Y. Li, Some existence results of fully nonlinear elliptic equations of Monge-Amp $ \grave {\mbox {e}}$re type, Comm. Pure Appl. Math. 43 (1990), 233-271. MR 1038143 (91b:58269)
  • 17. L. Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity, Comm. Pure Appl. Math. 6 (1953), 103-156. MR 0064986 (16:367c)
  • 18. Y. S. Poon, Extended deformation of Kodaira surfaces, J. Reine Angew. Math. 590 (2006), 45-65. MR 2208128 (2007e:32009)
  • 19. K. Sakamoto, S. Fukuhara, Classification of $ T^2$-bundles over $ T^2$, Tokyo J. Math. 6 (1983), 311-327. MR 732086 (85h:55021)
  • 20. S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), no. 2-3, 311-333. MR 1812058 (2002g:53089)
  • 21. F. Schulz, Second-derivative estimates for solutions of two-dimensional Monge-Ampère equations, Proc. Amer. Math. Soc. 111 (1991), 101-110. MR 1031671 (91e:35038)
  • 22. W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468. MR 0402764 (53:6578)
  • 23. V. Tosatti, B. Weinkove, S. T. Yau, Taming symplectic forms and the Calabi-Yau equation, Proc. London Math. Soc. 97 (2008), no. 2, 401-424. MR 2439667 (2009h:32032)
  • 24. V. Tosatti, B. Weinkove, Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds, Asian J. Math. 14 (2010), 19-40. MR 2726593 (2011h:32043)
  • 25. V. Tosatti, B. Weinkove, The Calabi-Yau equation on the Kodaira-Thurston manifold, J. Inst. Math. Jussieu 10 (2011), no. 2, 437-447. MR 2787695
  • 26. M. Ue, On the $ 4$-dimensional Seifert fiberings with euclidean space orbifolds, in A fête of topology, 471-523, Academic Press, Boston, 1988. MR 928414 (89c:55015)
  • 27. M. Ue, Geometric $ 4$-manifolds in the sense of Thurston and Seifert 4-manifolds I, J. Math. Soc. Japan 42 (1990), no. 3, 511-540. MR 1056834 (91k:57023)
  • 28. S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. MR 480350 (81d:53045)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C25, 35J60, 53D35

Retrieve articles in all journals with MSC (2010): 53C25, 35J60, 53D35


Additional Information

A. Fino
Affiliation: Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italia
Email: annamaria.fino@unito.it

Y.Y. Li
Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854
Email: yyli@math.rutgers.edu

S. Salamon
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italia – and – Department of Mathematics, King’s College London, Strand, London, WC2R 2LS, United Kingdom
Email: simon.salamon@kcl.ac.uk

L. Vezzoni
Affiliation: Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italia
Email: luigi.vezzoni@unito.it

DOI: https://doi.org/10.1090/S0002-9947-2012-05692-3
Received by editor(s): April 11, 2011
Received by editor(s) in revised form: August 6, 2011
Published electronically: October 1, 2012
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society