Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications
Authors:
KuoChih Hung and ShinHwa Wang
Journal:
Trans. Amer. Math. Soc. 365 (2013), 19331956
MSC (2010):
Primary 34B18, 74G35
Published electronically:
August 22, 2012
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study the global bifurcation and exact multiplicity of positive solutions of where are two bifurcation parameters, and are constants. By developing some new timemap techniques, we prove the global bifurcation of bifurcation curves for varying . More precisely, we prove that, for any , there exists such that, on the plane, the bifurcation curve is Sshaped for and is monotone increasing for . (We also prove the global bifurcation of bifurcation curves for varying .) Thus we are able to determine the exact number of positive solutions by the values of and . We give an application to prove a longstanding conjecture for global bifurcation of positive solutions for the problem which was studied by Crandall and Rabinowitz (Arch. Rational Mech. Anal. 52 (1973), p. 177). In addition, we give an application to prove a conjecture of Smoller and Wasserman (J. Differential Equations 39 (1981), p. 283, lines 23) on the maximum number of positive solutions of a positone problem.
 1.
Jerrold
Bebernes and David
Eberly, Mathematical problems from combustion theory, Applied
Mathematical Sciences, vol. 83, SpringerVerlag, New York, 1989. MR 1012946
(91d:35165)
 2.
K.
J. Brown, M.
M. A. Ibrahim, and R.
Shivaji, 𝑆shaped bifurcation curves, Nonlinear Anal.
5 (1981), no. 5, 475–486. MR 613056
(82h:35007), http://dx.doi.org/10.1016/0362546X(81)900961
 3.
Michael
G. Crandall and Paul
H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and
linearized stability, Arch. Rational Mech. Anal. 52
(1973), 161–180. MR 0341212
(49 #5962)
 4.
Jesús
Ildefonso Díaz and Jesús
Hernández, Global bifurcation and continua of nonnegative
solutions for a quasilinear elliptic problem, C. R. Acad. Sci. Paris
Sér. I Math. 329 (1999), no. 7, 587–592
(English, with English and French summaries). MR 1717114
(2000h:34028), http://dx.doi.org/10.1016/S07644442(00)800063
 5.
J.
I. Díaz, J.
Hernández, and F.
J. Mancebo, Branches of positive and free boundary solutions for
some singular quasilinear elliptic problems, J. Math. Anal. Appl.
352 (2009), no. 1, 449–474. MR 2499916
(2010h:35163), http://dx.doi.org/10.1016/j.jmaa.2008.07.073
 6.
Yihong
Du, Exact multiplicity and Sshaped bifurcation curve for some
semilinear elliptic problems from combustion theory, SIAM J. Math.
Anal. 32 (2000), no. 4, 707–733. MR 1814735
(2001m:35105), http://dx.doi.org/10.1137/S0036141098343586
 7.
Meiqiang
Feng, Xuemei
Zhang, and Weigao
Ge, Exact number of solutions for a class of twopoint boundary
value problems with onedimensional 𝑝Laplacian, J. Math.
Anal. Appl. 338 (2008), no. 2, 784–792. MR 2386460
(2009d:34039), http://dx.doi.org/10.1016/j.jmaa.2007.04.058
 8.
P.
Gray, G.
Nicolis, F.
Baras, P.
Borckmans, and S.
K. Scott (eds.), Spatial inhomogeneities and transient behaviour in
chemical kinetics, Proceedings in Nonlinear Science, Manchester
University Press, Manchester, 1990. Papers from the International
Conference held in Brussels, August 31–September 4, 1987. MR 1098081
(92b:80016)
 9.
KuoChih
Hung and ShinHwa
Wang, A theorem on Sshaped bifurcation curve for a positone
problem with convexconcave nonlinearity and its applications to the
perturbed Gelfand problem, J. Differential Equations
251 (2011), no. 2, 223–237. MR 2800152
(2012c:34042), http://dx.doi.org/10.1016/j.jde.2011.03.017
 10.
J.
P. Kernevez and D.
Thomas, Numerical analysis and control of some biochemical
systems, Appl. Math. Optim. 1 (1974/75), no. 3,
222–285 (English, with French summary). MR 0403716
(53 #7527)
 11.
Philip
Korman and Yi
Li, On the exactness of an Sshaped
bifurcation curve, Proc. Amer. Math. Soc.
127 (1999), no. 4,
1011–1020. MR 1610804
(99f:34027), http://dx.doi.org/10.1090/S000299399904928X
 12.
Philip
Korman, Yi
Li, and Tiancheng
Ouyang, Computing the location and direction of bifurcation,
Math. Res. Lett. 12 (2005), no. 56, 933–944.
MR
2189251 (2006h:34079), http://dx.doi.org/10.4310/MRL.2005.v12.n6.a13
 13.
Theodore
Laetsch, The number of solutions of a nonlinear two point boundary
value problem, Indiana Univ. Math. J. 20 (1970/1971),
1–13. MR
0269922 (42 #4815)
 14.
Roger
Logan, Positive solutions to a system of differential equations
modeling a competitive interactive system with nonlogistic growth
rates, Differential Integral Equations 10 (1997),
no. 5, 929–945. MR 1741759
(2000m:34100)
 15.
Chunqing
Lu, Multiple steady states in a biochemical system, SIAM J.
Math. Anal. 18 (1987), no. 6, 1771–1783. MR 911662
(88k:92032), http://dx.doi.org/10.1137/0518125
 16.
Chunqing
Lu, Global bifurcation of steadystate solutions on a biochemical
system, SIAM J. Math. Anal. 21 (1990), no. 1,
76–84. MR
1032728 (91a:35025), http://dx.doi.org/10.1137/0521005
 17.
Junping
Shi, Persistence and bifurcation of degenerate solutions, J.
Funct. Anal. 169 (1999), no. 2, 494–531. MR 1730558
(2001h:47115), http://dx.doi.org/10.1006/jfan.1999.3483
 18.
Junping
Shi, Multiparameter bifurcation and applications, Topological
methods, variational methods and their applications (Taiyuan, 2002) World
Sci. Publ., River Edge, NJ, 2003, pp. 211–221. MR 2011699
(2004j:35026)
 19.
J.
Smoller and A.
Wasserman, Global bifurcation of steadystate solutions, J.
Differential Equations 39 (1981), no. 2,
269–290. MR
607786 (82d:58056), http://dx.doi.org/10.1016/00220396(81)900772
 20.
Ken’ichiro
Tanaka, Sunao
Murashige, and Shin’ichi
Oishi, On necessary and sufficient conditions for numerical
verification of double turning points, Numer. Math.
97 (2004), no. 3, 537–554. MR 2059468
(2005m:65309), http://dx.doi.org/10.1007/s0021100305154
 21.
Shin
Hwa Wang, On 𝖲shaped bifurcation curves, Nonlinear
Anal. 22 (1994), no. 12, 1475–1485. MR 1285087
(96d:34021), http://dx.doi.org/10.1016/0362546X(94)90183X
 22.
ShinHwa
Wang and DauMing
Long, An exact multiplicity theorem involving concaveconvex
nonlinearities and its application to stationary solutions of a singular
diffusion problem, Nonlinear Anal. 44 (2001),
no. 4, Ser. A: Theory Methods, 469–486. MR 1822096
(2002b:34042), http://dx.doi.org/10.1016/S0362546X(99)002722
 23.
ShinHwa
Wang and TzungShin
Yeh, A theorem on reversed Sshaped bifurcation curves for a class
of boundary value problems and its application, Nonlinear Anal.
71 (2009), no. 12, 126–140. MR 2518020
(2010e:34061), http://dx.doi.org/10.1016/j.na.2008.10.070
 24.
Yuhua
Zhao, Yuwen
Wang, and Junping
Shi, Exact multiplicity of solutions and Sshaped bifurcation curve
for a class of semilinear elliptic equations, J. Math. Anal. Appl.
331 (2007), no. 1, 263–278. MR 2306004
(2008e:35081), http://dx.doi.org/10.1016/j.jmaa.2006.08.081
 1.
 J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory, SpringerVerlag, New York, 1989. MR 1012946 (91d:35165)
 2.
 K.J. Brown, M.M.A. Ibrahim, R. Shivaji, shaped bifurcation curves, Nonlinear Anal. 5 (1981), 475486. MR 0613056 (82h:35007)
 3.
 M.G. Crandall, P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161180. MR 0341212 (49:5962)
 4.
 J.I. Díaz, J. Hernández, Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 587592. MR 1717114 (2000h:34028)
 5.
 J.I. Díaz, J. Hernández, F.J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl. 352 (2009), 449474. MR 2499916 (2010h:35163)
 6.
 Y. Du, Exact multiplicity and shaped bifurcation curve for some semilinear elliptic problems from combustion theory, SIAM J. Math. Anal. 32(2000), 707733. MR 1814735 (2001m:35105)
 7.
 M. Feng, X. Zhang, W. Ge, Exact number of solutions for a class of twopoint boundary value problems with onedimensional Laplacian, J. Math. Anal. Appl. 338 (2008), 784792. MR 2386460 (2009d:34039)
 8.
 P. Gray, S.K. Scott, Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics, Clarendon Press, Oxford, 1990. MR 1098081 (92b:80016)
 9.
 K.C. Hung, S.H. Wang, A theorem on Sshaped bifurcation curve for a positone problem with convexconcave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations 251 (2011), 223237. MR 2800152
 10.
 J.P. Kernevez, D. Thomas, Numerical analysis and control of some biochemical systems, Appl. Math. Optim. 1 (1975), 222285. MR 0403716 (53:7527)
 11.
 P. Korman, Y. Li, On the exactness of an Sshaped bifurcation curve, Proc. Amer. Math. Soc. 127 (1999), 10111020. MR 1610804 (99f:34027)
 12.
 P. Korman, Y. Li, T. Ouyang, Computing the location and the direction of bifurcation, Mathematical Research Letters 12 (2005), 933944. MR 2189251 (2006h:34079)
 13.
 T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970), 113. MR 0269922 (42:4815)
 14.
 R. Logan, Positive solutions to a system of differential equations modeling a competitive interactive system with nonlogistic growth rates, Differential Integral Equations 10 (1997), 929945. MR 1741759 (2000m:34100)
 15.
 C. Lu, Multiple steady states in a biochemical system, SIAM J. Math. Anal. 18 (1987), 17711783. MR 0911662 (88k:92032)
 16.
 C. Lu, Global bifurcation of steadystate solutions on a biochemical system, SIAM J. Math. Anal. 21 (1990), 7684. MR 1032728 (91a:35025)
 17.
 J. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal. 169 (1999), 494531. MR 1730558 (2001h:47115)
 18.
 J. Shi, Multiparameter bifurcation and applications, in: H. Brezis, K.C. Chang, S.J. Li, P. Rabinowitz (Eds.), ICM 2002 Satellite Conference on Nonlinear Functional Analysis: Topological Methods, Variational Methods and Their Applications, World Scientific, Singapore, 2003, pp. 211222. MR 2011699 (2004j:35026)
 19.
 J. Smoller, A. Wasserman, Global bifurcation of steadystate solutions, J. Differential Equations 39 (1981), 269290. MR 0607786 (82d:58056)
 20.
 K. Tanaka, S. Murashige, S. Oishi, On necessary and sufficient conditions for numerical verification of double turning points, Numer. Math. 97 (2004), 537554. MR 2059468 (2005m:65309)
 21.
 S.H. Wang, On shaped bifurcation curves, Nonlinear Anal. 22 (1994), 14751485. MR 1285087 (96d:34021)
 22.
 S.H. Wang, D.M. Long, An exact multiplicity theorem involving concaveconvex nonlinearities and its application to stationary solutions of a singular diffusion problem, Nonlinear Anal. 44 (2001), 469486. MR 1822096 (2002b:34042)
 23.
 S.H. Wang, T.S. Yeh, A theorem on reversed Sshaped bifurcation curves for a class of boundary value problems and its application, Nonlinear Anal. 71 (2009), 126140. MR 2518020 (2010e:34061)
 24.
 Y. Zhao, Y. Wang, J. Shi, Exact multiplicity of solutions and Sshaped bifurcation curve for a class of semilinear elliptic equations, J. Math. Anal. Appl. 331 (2007), 263278. MR 2306004 (2008e:35081)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
34B18,
74G35
Retrieve articles in all journals
with MSC (2010):
34B18,
74G35
Additional Information
KuoChih Hung
Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
Email:
kchung@mx.nthu.edu.tw
ShinHwa Wang
Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
Email:
shwang@math.nthu.edu.tw
DOI:
http://dx.doi.org/10.1090/S000299472012056704
PII:
S 00029947(2012)056704
Keywords:
Global bifurcation,
exact multiplicity,
positive solution,
positone problem,
Sshaped bifurcation curve,
time map.
Received by editor(s):
July 9, 2010
Received by editor(s) in revised form:
February 19, 2011, and June 23, 2011
Published electronically:
August 22, 2012
Additional Notes:
This work was partially supported by the National Science Council of the Republic of China under grant No. 982115M007008MY3.
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
