boundedness of maximal averages over hypersurfaces in

Author:
Michael Greenblatt

Journal:
Trans. Amer. Math. Soc. **365** (2013), 1875-1900

MSC (2010):
Primary 42B20

DOI:
https://doi.org/10.1090/S0002-9947-2012-05697-2

Published electronically:
September 19, 2012

MathSciNet review:
3009647

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Extending the methods developed in the author's recent paper and using some techniques from a paper by Sogge and Stein in conjunction with various facts about adapted coordinate systems in two variables, an boundedness theorem is proven for maximal operators over hypersurfaces in when When the best possible is greater than , the theorem typically provides sharp estimates. This gives another approach to the subject of recent work of Ikromov, Kempe, and Müller (2010).

**[B]**J. Bourgain,*Averages in the plane over convex curves and maximal operators*, J. Anal. Math.**47**(1986), 69-85. MR**874045 (88f:42036)****[CoMa]**M. Cowling and G. Mauceri,*Inequalities for some maximal functions. II*, Trans. Amer. Math. Soc.**298**(1986), no. 1, 341-365. MR**837816 (87m:42013)****[G1]**M. Greenblatt,*Maximal averages over hypersurfaces and the Newton polyhedron*, submitted.**[Gr]**A. Greenleaf,*Principal curvature and harmonic analysis*, Indiana Univ. Math. J.**30**(1981), no. 4, 519-537. MR**620265 (84i:42030)****[IkKeMu1]**I. Ikromov, M. Kempe, and D. Müller,*Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces*(English summary) Duke Math. J.**126**(2005), no. 3, 471-490. MR**2120115 (2005k:42050)****[IkKeMu2]**I. Ikromov, M. Kempe, and D. Müller,*Estimates for maximal functions associated to hypersurfaces in and related problems of harmonic analysis*, Acta Math.**204**(2010), no. 2, 151-271. MR**2653054 (2011i:42026)****[IkMu]**I. Ikromov and D. Müller,*On adapted coordinate systems*, Trans. Amer. Math. Soc.,**363**(2011), 2821-2848. MR**2775788****[IoSa1]**A. Iosevich and E. Sawyer,*Oscillatory integrals and maximal averages over homogeneous surfaces*, Duke Math. J.**82**no. 1 (1996), 103-141. MR**1387224 (97f:42035)****[IoSa2]**A. Iosevich and E. Sawyer,*Maximal averages over surfaces*, Adv. Math.**132**(1997), no. 1, 46-119. MR**1488239 (99b:42023)****[NaSeWa]**A. Nagel, A. Seeger, and S. Wainger,*Averages over convex hypersurfaces*, Amer. J. Math.**115**(1993), no. 4, 903-927. MR**1231151 (94m:42033)****[PSt]**D. H. Phong and E. M. Stein,*The Newton polyhedron and oscillatory integral operators*, Acta Math.**179**(1997), 107-152. MR**1484770 (98j:42009)****[So]**C. Sogge,*Maximal operators associated to hypersurfaces with one nonvanishing principal curvature*(English summary) in*Fourier analysis and partial differential equations*(Miraflores de la Sierra, 1992), 317-323, Stud. Adv. Math., CRC, Boca Raton, FL, 1995. MR**1330250 (96e:42014)****[SoSt]**C. Sogge and E. Stein,*Averages of functions over hypersurfaces in*, Invent. Math.**82**(1985), no. 3, 543-556. MR**811550 (87d:42030)****[St1]**E. Stein,*Maximal functions. I. Spherical means.*Proc. Nat. Acad. Sci. U.S.A.**73**(1976), no. 7, 2174-2175. MR**0420116 (54:8133a)****[St2]**E. Stein,*Harmonic analysis; real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematics Series Vol. 43, Princeton University Press, Princeton, NJ, 1993. MR**1232192 (95c:42002)****[V]**A. N. Varchenko,*Newton polyhedra and estimates of oscillatory integrals*, Funktsional. Anal. i Priložen**10**(1976), 13-38. English translation in Functional Anal. Appl.**18**(1976), no. 3, 175-196. MR**0422257 (54:10248)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
42B20

Retrieve articles in all journals with MSC (2010): 42B20

Additional Information

**Michael Greenblatt**

Affiliation:
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices, 851 S. Morgan Street, Chicago, Illinois 60607-7045

DOI:
https://doi.org/10.1090/S0002-9947-2012-05697-2

Received by editor(s):
April 27, 2011

Published electronically:
September 19, 2012

Additional Notes:
This research was supported in part by NSF grant DMS-0919713

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.