Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Tracking a moving point in the plane

Authors: Frederick P. Gardiner and Nikola Lakic
Journal: Trans. Amer. Math. Soc. 365 (2013), 1957-1975
MSC (2010): Primary 30F60; Secondary 32G15, 30C70, 30C75
Published electronically: September 18, 2012
MathSciNet review: 3009650
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Teichmüller theory of any hyperbolic Riemann surface $ R$ induces two closely related metrics on $ R$ in the following way. From a theorem of Bers, the fiber

$\displaystyle \mathbb{K}= \Psi ^{-1}([identity])$

of the forgetful map $ \Psi $ from the Teichmüller space $ Teich(R-p)$ onto the Teichmüller space $ Teich(R)$ is conformal to a disc and the evaluation map $ \mathbb{K} \ni [f] \mapsto f(p) \in R$ is a universal covering of $ R.$ There are two infinitesimal metrics on $ \mathbb{K}$ coming from Kobayashi's construction:
  1. $ Teich_{\mathbb{K}}$ is the restriction of the Teichmüller infinitesimal metric on
    $ Teich(R-p)$ to the submanifold $ \mathbb{K}, {\rm\ and \ }$
  2. $ Kob_{\mathbb{K}}$ is the Kobayashi metric on $ \mathbb{K}.$

We show these metrics, respectively, are the lifts via the evaluation map of infinitesimal forms $ \lambda $ and $ \rho $ on $ R,$ where $ \lambda $ and $ \rho $ are the Teichmüller and Poincaré densities. $ \lambda $ and $ \rho $ have very different descriptions. For plane domains

$\displaystyle \lambda (p)=\inf \{\vert\vert{\overline {\partial }}V\vert\vert _{\infty }\},$

where the infimum is taken over all continuous functions $ V$ for which $ V(p)=1$ and $ V$ vanishes on the boundary of $ R,$ and

$\displaystyle \rho (p)=\inf \{1/\vert f'(0)\vert\},$

where the infimum is taken over all holomorphic functions $ f$ mapping the unit disc into $ R$ with $ f(0)=p.$ We also show

$\displaystyle (1/2) Kob_{\mathbb{K}} \leq Teich_{\mathbb{K}} \leq Kob_{\mathbb{K}} {\rm\ \ and \ }$

$\displaystyle (1/2) \rho \leq \lambda \leq \rho ,$

and $ \lambda /\rho =1/2$ when $ R$ is simply connected, $ \lambda /\rho =1$ when $ R$ is a thrice punctured sphere, and in all other cases these inequalities are strict.

References [Enhancements On Off] (What's this?)

  • 1. L. V. Ahlfors.
    Lectures on Quasiconformal Mapping,, volume 38 of University Lecture Series.
    Amer. Math. Soc., 2006. MR 2241787 (2009d:30001)
  • 2. L. Bers.
    An approximation theorem.
    J. d'Analyse Math., 14:1-4, 1965. MR 0178287 (31:2545)
  • 3. L. Bers.
    Fibre spaces over Teichmüller spaces.
    Acta Math., 130:89-126, 1973. MR 0430318 (55:3323)
  • 4. C. J. Earle.
    On holomorphic cross-sections in Teichmüller spaces.
    Duke Math. J., 36:409-416, 1969. MR 0254233 (40:7442)
  • 5. C. J. Earle and S. Mitra.
    Variation of moduli under holomorphic motions.
    Contemp. Math., 256:39-67, 2000. MR 1759669 (2001f:30031)
  • 6. F. P. Gardiner.
    Approximation of infinite dimensional Teichmüller spaces.
    Trans. Amer. Math. Soc., 282(1):367-383, 1984. MR 728718 (85f:30082)
  • 7. F. P. Gardiner and N. Lakic.
    Quasiconformal Teichmüller Theory.
    Mathematical Surveys and Monographs, Vol. 76, Amer. Math. Soc., Providence, Rhode Island, 2000. MR 1730906 (2001d:32016)
  • 8. F. P. Gardiner and N. Lakic.
    Comparing Poincaré densities.
    Ann. of Math. (2), 154:247-259, 2001. MR 1865971 (2003c:30046)
  • 9. F. P. Gardiner and N. Lakic.
    A vector field approach to mapping class actions.
    Proc. London Math. Soc., 92(3):403-427, 2006. MR 2205723 (2006k:30047)
  • 10. I. Kra.
    On the Thurston-Bers type of some self-maps of Riemann surfaces.
    Acta Math., 146:231-270, 1981. MR 611385 (82m:32019)
  • 11. N. Lakic.
    Infinitesimal Teichmüller geometry.
    Complex Variables, 30:1-17, 1996. MR 1395227 (97i:30061)
  • 12. L. X. Liu and X. Yang.
    On some properties of infinite dimensional Bers fiber space.
    Northeast Math J., 15:203-208, 1999. MR 1712183 (2000i:32024)
  • 13. S. Nag.
    Non-geodesic discs embedded in Teichmüller spaces.
    Amer. J. Math., 104:399-408, 1982. MR 654412 (83e:32027)
  • 14. H. Royden.
    Automorphisms and isometries of Teichmüller space.
    Annals of Math. Studies, 66:369-384, 1971. MR 0288254 (44:5452)
  • 15. Z. Slodkowski.
    Holomorphic motions and polynomial hulls.
    Proc. Amer. Math. Soc., 111:347-355, 1991. MR 1037218 (91f:58078)
  • 16. C. Zhang.
    On isomorphisms of Bers' fiber spaces.
    Ann. Acad. Scien. Fennica, 22:255-74, 1997. MR 1469791 (98m:32034)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 30F60, 32G15, 30C70, 30C75

Retrieve articles in all journals with MSC (2010): 30F60, 32G15, 30C70, 30C75

Additional Information

Frederick P. Gardiner
Affiliation: Department of Mathematics, Graduate School and University Center of CUNY, New York, New York 10016 – and – Department of Mathematics, Brooklyn College, CUNY, Brooklyn, New York 11210

Nikola Lakic
Affiliation: Department of Mathematics, Herbert H. Lehman College, Bronx, New York 10468

Received by editor(s): November 10, 2009
Received by editor(s) in revised form: July 20, 2011
Published electronically: September 18, 2012
Additional Notes: The second author was partially supported by NSF grant 0700052
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society