Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Restriction for homogeneous polynomial surfaces in $ \mathbb{R}^3$


Authors: A. Carbery, C. E. Kenig and S. N. Ziesler
Journal: Trans. Amer. Math. Soc. 365 (2013), 2367-2407
MSC (2010): Primary 42B99
DOI: https://doi.org/10.1090/S0002-9947-2012-05685-6
Published electronically: November 6, 2012
MathSciNet review: 3020102
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an optimal restriction theorem for an arbitrary homogeneous polynomial hypersurface (of degree at least 2) in $ \mathbb{R}^3,$ with affine curvature introduced as a mitigating factor.


References [Enhancements On Off] (What's this?)

  • 1. F. Abi-Khuzam & B. Shayya, Fourier restriction to convex surfaces of revolution in $ {\mathbb{R}}^3,$ Publ. Mat. 50 (2006) no. 1, 71-85 MR 2325011 (2008e:42019)
  • 2. J.-G. Bak, Restrictions of Fourier transforms to flat curves in $ {\mathbf R}^2,$ Illinois J. Math. 38 (1994) no. 2, 327-346 MR 1260846 (94m:42032)
  • 3. J. Bochnak, M. Coste & M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag (1987) MR 949442 (90b:14030)
  • 4. L. Brandolini, A. Iosevich & G. Travaglini, Spherical means and the restriction phenomenon, J. Fourier Anal. Appl. 7 (2001) no. 4, 369-372 MR 1836818 (2002e:42009)
  • 5. A. Carbery & S. Ziesler, Restriction and decay for flat hypersurfaces, Publ. Mat. 46 (2002), 405-434 MR 1934361 (2003i:42019)
  • 6. A. Carbery, C. Kenig & S. Ziesler, Restriction for flat surfaces of revolution in $ {\mathbb{R}}^3,$ Proc. Amer. Math. Soc. 135 (2007) no. 6, 1905-1914 MR 2286103 (2008c:42021)
  • 7. M. Cowling, S. Disney, G. Mauceri, & D. Műller, Damping oscillatory integrals, Invent. Math. 101(1990) 237-260 MR 1062963 (91d:58242)
  • 8. S.W. Drury, Degenerate curves and harmonic analysis, Math. Proc. Cambridge. Philos. Soc. 108 (1990) 89-96 MR 1049762 (91h:42021)
  • 9. A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. MR 1867354 (2002k:55001)
  • 10. C.E. Kenig, G. Ponce & L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991) no. 1, 33-69 MR 1101221 (92d:35081)
  • 11. C.E. Kenig & P. Tomas, $ L^p$ behavior of certain second order differential operators, Trans. Amer. Math. Soc. 262 (1980) 521-531 MR 586732 (83d:42019)
  • 12. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964) no.2, 275-280 MR 0161339 (28:4547)
  • 13. J. Milnor, Topology from the Differentiable Viewpoint, University Press of Virginia, Charlottesville (1965), Princeton University Press (1998) MR 0226651 (37:2239)
  • 14. D. Oberlin, A uniform Fourier restriction theorem for surfaces in $ {\mathbb{R}}^3$, Proc. Amer. Math. Soc. 132 (2004) 1195-1199 MR 2045437 (2005h:42020)
  • 15. P. Sjölin, Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in $ {\mathbf R}^2,$ Studia Math. 51 (1974) 169-182 MR 0385437 (52:6299)
  • 16. L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, vol. 3, Australian National University (1983) MR 756417 (87a:49001)
  • 17. E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press (1970) MR 0290095 (44:7280)
  • 18. E.M. Stein, Harmonic Analysis; real-variable methods, orthogonality and oscillatory integrals, Princeton University Press (1993) MR 1232192 (95c:42002)
  • 19. P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975) no. 2, 477-478 MR 0358216 (50:10681)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42B99

Retrieve articles in all journals with MSC (2010): 42B99


Additional Information

A. Carbery
Affiliation: Department of Mathematics, University of Edinburgh, Edinburgh EH9 2BJ, United Kingdom
Email: carbery@maths.ed.ac.uk

C. E. Kenig
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: cek@math.uchicago.edu

S. N. Ziesler
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: ziesler@math.uchicago.edu

DOI: https://doi.org/10.1090/S0002-9947-2012-05685-6
Received by editor(s): May 11, 2010
Received by editor(s) in revised form: May 24, 2011
Published electronically: November 6, 2012
Additional Notes: The second author was partially supported by NSF grants DMS-0456583 and DMS-0968472.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society