Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Immersed surfaces and Seifert fibered surgery on Montesinos knots


Author: Ying-Qing Wu
Journal: Trans. Amer. Math. Soc. 365 (2013), 2469-2488
MSC (2010): Primary 57N10
DOI: https://doi.org/10.1090/S0002-9947-2012-05708-4
Published electronically: September 18, 2012
MathSciNet review: 3020105
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We will use immersed surfaces to study Seifert fibered surgery on Montesinos knots, and show that if $ \frac 1{q_1-1} + \frac 1{q_2-1} + \frac 1{q_3-1} \leq 1$, then a Montesinos knot $ K(\frac {p_1}{q_1}, \frac {p_2}{q_2}, \frac {p_3}{q_3})$ admits no atoroidal Seifert fibered surgery.


References [Enhancements On Off] (What's this?)

  • [BW] M. Brittenham and Y-Q. Wu, The classification of exceptional Dehn surgeries on $ 2$-bridge knots, Comm. Anal.Geom. 9 (2001), 97-113. MR 1807953 (2001m:57008)
  • [De] C. Delman, Constructing essential laminations which survive all Dehn surgeries, preprint.
  • [Ga] D. Gabai, Foliations and the topology of $ 3$-manifolds III, J. Diff. Geom. 26 (1987), 479-536. MR 910018 (89a:57014b)
  • [FIKMS] D. Futer, M. Ishikawa, Y. Kabaya, T.Mattman and K. Shimokawa, Finite surgeries on three-tangle pretzel knots, Algebr. Geom. Topol. 9 (2009), 743-771. MR 2496889 (2010a:57008)
  • [GW] C. Gordon and Y-Q. Wu, Annular Dehn fillings, Comment. Math. Helv. 75 (2000), 430-456. MR 1793797 (2001j:57024)
  • [HO] A. Hatcher and U. Oertel, Boundary slopes for Montesinos knots, Topology 28 (1989), 453-480. MR 1030987 (91e:57016)
  • [HT] A. Hatcher and W. Thurston, Incompressible surfaces in $ 2$-bridge knot complements, Invent. Math. 79 (1985), 225-246. MR 778125 (86g:57003)
  • [IJ1] K. Ichihara, I. Jong, Cyclic and finite surgeries on Montesinos knots, Alg. Geom. Topol. 9 (2009), 731-742. MR 2496888 (2011b:57021)
  • [IJ2] -, Toroidal Seifert fibered surgeries on Montesinos knots, Comm. Anal. Geom. 18 (2010), 579-600. MR 2747439 (2012f:57040)
  • [Ma] T. Mattman, Cyclic and finite surgeries on pretzel knots, J. Knot Theory Ram. 11 (2002), 891-902. MR 1936241 (2003j:57013)
  • [Ni] Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), 577-608. MR 2357503 (2008j:57053)
  • [Pr] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, ArXiv:math.DG/0211159.
  • [Sc] P. Scott, The geometries of $ 3$-manifolds, Bull. London Math. Soc. 15 (1983), 401-487. MR 705527 (84m:57009)
  • [Wa] L. Watson, Surgery obstructions from Khovanov homology, preprint.
  • [Wu1] Y-Q. Wu, Dehn surgery on arborescent knots, J. Diff. Geom. 42 (1996), 171-197. MR 1424423 (97j:57013)
  • [Wu2] -, Exceptional Dehn surgery on large arborescent knots, Pac. J. Math. 252 (2011), 219-243. MR 2862149
  • [Wu3] -, The classification of toroidal Dehn surgeries on Montesinos knots, Comm. Anal. Geom. 19 (2011), 305-345. MR 2835882
  • [Wu4] -, Persistently laminar branched surfaces, Comm. Anal. Geom. 20 (2012), 397-434.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57N10

Retrieve articles in all journals with MSC (2010): 57N10


Additional Information

Ying-Qing Wu
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email: wu@math.uiowa.edu

DOI: https://doi.org/10.1090/S0002-9947-2012-05708-4
Keywords: Immersed surfaces, Dehn surgery, Seifert fibered manifolds, Montesinos knots
Received by editor(s): April 23, 2011
Received by editor(s) in revised form: September 3, 2011
Published electronically: September 18, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society