Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Kreck-Stolz invariants for quaternionic line bundles


Authors: Diarmuid Crowley and Sebastian Goette
Journal: Trans. Amer. Math. Soc. 365 (2013), 3193-3225
MSC (2010): Primary 58J28, 57R55; Secondary 57R20
Published electronically: November 20, 2012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We generalise the Kreck-Stolz invariants $ s_2$ and $ s_3$ by defining a new invariant, the $ t$-invariant, for quaternionic line bundles $ E$ over closed spin-manifolds $ M$ of dimension $ 4k-1$ with  $ H^3(M; \mathbb{Q}) = 0$ such that  $ c_2(E)\in H^4(M)$ is torsion. The $ t$-invariant classifies closed smooth oriented $ 2$-connected rational homology $ 7$-spheres up to almost-diffeomorphism, that is, diffeomorphism up to a connected sum with an exotic sphere. It also detects exotic homeomorphisms between such manifolds.

The $ t$-invariant also gives information about quaternionic line bundles over a fixed manifold, and we use it to give a new proof of a theorem of Feder and Gitler about the values of the second Chern classes of quaternionic line bundles over $ \mathbb{H} P^k$. The $ t$-invariant for $ S^{4k-1}$ is closely related to the Adams $ e$-invariant on the $ (4k-5)$-stem.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, On the groups $ J(X)$. IV, Topology 5 (1966), 21-71. MR 0198470 (33:6628)
  • 2. D. W. Anderson, E. H. Brown and F. P. Peterson, The structure of the spin cobordism ring, Ann. of Math. (2) 86 (1967), 271-298. MR 0219077 (36:2160)
  • 3. M. F. Atiyah, $ K$-theory, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New York-Amsterdam 1967. MR 0224083 (36:7130)
  • 4. M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276-281. MR 0110106 (22:989)
  • 5. M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69; II Math. Proc. Cambridge Philos. Soc. 78 (1975), 405-432; III Math. Proc. Cambridge Philos. Soc. 79 (1976), 71-99. MR 0397797 (53:1655a); MR 0397798 (53:1655b); MR 0397799 (53:1655c)
  • 6. M. F. Atiyah and I. M. Singer, The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422-433. MR 0157392 (28:626)
  • 7. J. M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller, with an appendix by François Laudenbach, Astérisque No. 205 (1992), 235 pp. MR 1185803 (93j:58138)
  • 8. -, Real embeddings and eta invariants, Math. Ann. 295 (1993), 661-684. MR 1214954 (94e:58131)
  • 9. W. Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65. Springer-Verlag, New York-Heidelberg 1972. MR 0358813 (50:11272)
  • 10. U. Bunke, On the topological contents of eta invariants, preprint (2011), arXiv:1103.4217.
  • 11. H. Cerf, Sur les difféomorphismes de la sphère de dimension trois ( $ \Gamma _4 = 0$), Lecture Notes in Mathematics 53, Springer-Verlag, 1968. MR 0229250 (37:4824)
  • 12. D. Crowley, The classification of highly connected manifolds in dimensions 7 and 15, Ph.D. Thesis, Indiana University 2002, arXiv:math/0203253. MR 2703475
  • 13. D. Crowley and C. Escher, Classification of $ S^3$-bundles over $ S^4$, Diff. Geom. Appl. 18 (2003), 363-380. MR 1975035 (2004e:55020)
  • 14. O. Dearricott, A 7-manifold with positive curvature, Duke Math. J. 158 (2011), 307-346. MR 2805071
  • 15. F. Deloup and G. Massuyeau, Quadratic functions and complex spin structures on three-manifolds, Topology 44 (2005), no. 3, 509-555. MR 2122215 (2005j:57033)
  • 16. H. Donnelly, Spectral geometry and invariants from differential topology, Bull. London Math. Soc. 7 (1975), 147-150. MR 0372929 (51:9133)
  • 17. J. Eells and N. Kuiper, An invariant for certain smooth manifolds, Annali di Math. 60 (1962), 93-110. MR 0156356 (27:6280)
  • 18. S. Feder and S. Gitler, Mappings of quaternionic projective spaces, Bol. Soc. Mat. Mexicana (2) 18 (1973), 33-37. MR 0336740 (49:1513)
  • 19. S. Goette, Adiabatic limits of Seifert fibrations, Dedekind sums, and the diffeomorphism type of certain 7-manifolds, preprint (2011), arXiv:1108.5614.
  • 20. D. L. Gonçalves and M. Spreafico, Quaternionic Line Bundles over Quaternionic Projective Spaces, Math. J. Okayama Univ. 48 (2006), 87-101. MR 2291170 (2008h:55013)
  • 21. K. Grove, L. Verdiani and W. Ziller, An exotic $ T_1S^4$ with positive curvature, Geom. Funct. Anal. 21 (2011), 499-524; arXiv:0809.2304. MR 2810857
  • 22. K. Grove, B. Wilking and W. Ziller, Positively Curved Cohomogeneity One Manifolds and 3-Sasakian Geometry, J. Diff. Geom. 78 (2008), 33-111; arXiv:math/0511464. MR 2406265 (2009m:53090)
  • 23. R. Hepworth, Generalized Kreck-Stolz invariants and the topology of certain 3-Sasakian 7-manifolds, Ph.D. Thesis, University of Edinburgh, 2005.
  • 24. M. Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), 707-754. MR 1709301 (2001a:57051)
  • 25. M. Kreck and S. Stolz, A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with $ \mathrm {SU}(3)\times \mathrm {SU}(2)\times \mathrm {U}(1)$-symmetry, Ann. of Math. (2) 127 (1988), 373-388. MR 932303 (89c:57042)
  • 26. R. C Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math. Stud. No. 88. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. MR 0645390 (58:31082)
  • 27. I. Madsen and J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Ann. of Math. Stud., Princeton University Press, 1979. MR 548575 (81b:57014)
  • 28. I. Madsen, L. Taylor and B. Williams, Tangential homotopy equivalences, Comm. Math. Helv. 55 (1980), 445-484. MR 593058 (82f:57015)
  • 29. S. Sasao, On homotopy type of certain complexes, Topology 3 (1965), 97-102. MR 0171281 (30:1512)
  • 30. N. Steenrod, The topology of fibre bundles, Princeton Mathematical Series No. 14., Princeton University Press, 1951. MR 0039258 (12:522b)
  • 31. H. Toda, Composition methods in homotopy groups of spheres, Princeton University Press, 1962. MR 0143217 (26:777)
  • 32. C. T. C. Wall, Classification problems in differential topology - VI, Topology 6 (1967), 273-296. MR 0216510 (35:7343)
  • 33. -, Surgery on compact manifolds, Second edition. Edited and with a foreword by A. A. Ranicki. Mathematical Surveys and Monographs, 69, American Mathematical Society, Providence RI, 1999. MR 1687388 (2000a:57089)
  • 34. -, Poincaré complexes: I, Ann. of Math. (2) 86 (1967), 213-245. MR 0217791 (36:880)
  • 35. G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, Springer-Verlag, 1978. MR 516508 (80b:55001)
  • 36. D. Wilkens, Closed $ (s-1)$-connected $ (2s+1)$-manifolds, $ s = 3,7$, Bull. London Math. Soc. 4 (1972), 27-31. MR 0307258 (46:6378)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 58J28, 57R55, 57R20

Retrieve articles in all journals with MSC (2010): 58J28, 57R55, 57R20


Additional Information

Diarmuid Crowley
Affiliation: Hausdorff Research Institute for Mathematics, Universität Bonn, Poppelsdorfer Allee 82, D-53115 Bonn, Germany
Email: diarmuidc23@gmail.com

Sebastian Goette
Affiliation: Mathematisches Institut, Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany
Email: sebastian.goette@math.uni-freiburg.de

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05732-1
PII: S 0002-9947(2012)05732-1
Keywords: $𝜂$-invariant, quaternionic line bundle, $7$-manifold, smooth structure, Kirby-Siebenmann invariant
Received by editor(s): January 5, 2011
Received by editor(s) in revised form: October 22, 2011, and October 25, 2011
Published electronically: November 20, 2012
Additional Notes: The second author was supported in part by SFB-TR 71 “Geometric Partial Differential Equations”
Article copyright: © Copyright 2012 American Mathematical Society