Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Short geodesic loops on complete Riemannian manifolds with a finite volume

Author: Regina Rotman
Journal: Trans. Amer. Math. Soc. 365 (2013), 2881-2894
MSC (2010): Primary 53C22, 53C23
Published electronically: January 17, 2013
MathSciNet review: 3034452
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we will show that on any complete noncompact Riemannian manifold with a finite volume there exist uncountably many geodesic loops of arbitrarily small length.

References [Enhancements On Off] (What's this?)

  • [B] V. Bangert, Closed geodesics on complete surfaces, Math. Ann., 251 (1980), 83-96. MR 583827 (81k:58027)
  • [Bl] F. Balacheff, Sur des problemes de la géométrie systolique, Séminaire de Théorie Spectrale et Géométrie. Vol. 22. Année 2003-2004, 71-82, Sémin. Théor. Spectr. Géom., 22, Univ. Grenoble I, Saint-Martin-d'Hères, 2004. MR 2136136 (2006a:53038)
  • [BZ] Ju. Burago, V. Zalgaller, Geometric Inequalities, Berlin: Springer-Verlag, 1988. MR 936419 (89b:52020)
  • [C] C. B.  Croke, Area and the length of the shortest closed geodesic, J. Diff. Geom., 27 (1988), 1-21. MR 918453 (89a:53050)
  • [CK] C. B. Croke, M. Katz, Universal volume bounds in Riemannian manifolds, Surveys in Differential Geometry. Vol. VIII (Boston, MA 2002), 109-137, Surv. Diff. Geom. VIII, Int. Press. Somerville, MA, 2003. MR 2039987 (2005d:53061)
  • [Ga] M.  Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math., 12 (1259), 1-11. MR 0102097 (21:892)
  • [G] M.  Gromov, Filling Riemannian manifolds, J. Diff. Geom., 18 (1983), 1-147. MR 697984 (85h:53029)
  • [Gt1] L. Guth, Volume of balls in large Riemannian manifolds, Ann. Math. (2) 173(2011), no. 1, 57-76. MR 2753599
  • [M] M.  Maeda, The length of a closed geodesic on a compact surface, Kyushu J. Math., 48 (1994), no. 1, 9-18. MR 1269063 (95b:58035)
  • [NR1] A.  Nabutovsky, R.  Rotman, The length of the shortest closed geodesic on a $ 2$-dimensional sphere, IMRN 2002, no. 23, 1211-1222. MR 1903953 (2003d:53062)
  • [NR2] A.  Nabutovsky, R.  Rotman, Volume, diameter and the minimal mass of a stationary $ 1$-cycle, Geom. Funct. Anal., 14 (2004), no. 4, 748-790. MR 2084979 (2005g:53069)
  • [NR3] A.  Nabutovsky, R.  Rotman, Curvature-free upper bounds for the smallest area of a minimal surface, Geom. Funct. Anal., 16 (2006), no. 2, 453-475. MR 2231470 (2007d:53062)
  • [NR4] A. Nabutovsky, R. Rotman, The minimal length of a non-trivial net on a closed Riemannian manifold with a non-trivial second homology group, Geom. Dedicata, 113 (2005), no. 1, 243-254. MR 2171308 (2006g:53048)
  • [NR5] A. Nabutovsky, R. Rotman, The length of the second shortest geodesic, Comment. Math. Helv., 84 (2009), 747-755. MR 2534478 (2011b:53085)
  • [R1] R. Rotman, The length of a shortest closed geodesic and the area of a $ 2$-dimensional sphere, Proc. Amer. Math. Soc., 134 (2006), no. 10, 3041-3047. MR 2231630 (2007f:53039)
  • [R2] R. Rotman, The length of a shortest geodesic net on a closed Riemannian manifold, Topology, 46:4 (2007), 343-356. MR 2321036 (2008m:58026)
  • [R3] R. Rotman, The length of a shortest geodesic loop at at point, J. Diff. Geom., 78:3 (2008), 497-519. MR 2396252 (2008m:53092)
  • [R4] R. Rotman, Flowers on Riemannian manifolds, preprint, MPIM2006-104, available at
  • [S1] S.  Sabourau, Filling radius and short closed geodesics of the $ 2$-sphere, Bull. Soc. Math. France, 132 (2004), no. 1, 105-136. MR 2075918 (2005g:53065)
  • [S2] S.  Sabourau, Global and local volume bounds and the shortest geodesic loops, Commun. Anal. Geom., 12 (2004), 1039-1053. MR 2103310 (2005h:53060)
  • [T] G. Thorbergsson, Closed geodesics on non-compact Riemannian manifolds, Math. Z., 159 (1978), 249-258. MR 0493872 (58:12833)
  • [W] S. Wenger, A short proof of Gromov's filling inequality, Proc. Amer. Math. Soc., 136 (2008), 2937-2941. MR 2399061 (2009a:53072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C22, 53C23

Retrieve articles in all journals with MSC (2010): 53C22, 53C23

Additional Information

Regina Rotman
Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
Address at time of publication: Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario, Canada M5S 2E4

Received by editor(s): April 28, 2011
Published electronically: January 17, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society