Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On epsilon factors attached to supercuspidal representations of unramified $ \mathrm{U}(2,1)$

Author: Michitaka Miyauchi
Journal: Trans. Amer. Math. Soc. 365 (2013), 3355-3372
MSC (2010): Primary 22E50, 22E35
Published electronically: January 4, 2013
MathSciNet review: 3034469
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be the unramified unitary group in three variables defined over a $ p$-adic field $ F$ with $ p \neq 2$. Gelbart, Piatetski-Shapiro and Baruch attached zeta integrals of Rankin-Selberg type to irreducible generic representations of $ G$. In this paper, we formulate a conjecture on $ L$- and $ \varepsilon $-factors defined through zeta integrals in terms of newforms for $ G$, which is an analogue of the result by Casselman and Deligne for $ \mathrm {GL}(2)$. We prove our conjecture for the generic supercuspidal representations of $ G$.

References [Enhancements On Off] (What's this?)

  • 1. E. M. Baruch, On the gamma factors attached to representations of $ {\rm U}(2,1)$ over a $ p$-adic field, Israel J. Math. 102 (1997), 317-345. MR 1489111 (2000i:22019)
  • 2. W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301-314. MR 0337789 (49:2558)
  • 3. P. Deligne, Formes modulaires et représentations de $ {\rm GL}(2)$, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 55-105. Lecture Notes in Math., Vol. 349. MR 0347738 (50:240)
  • 4. S. Gelbart and I. Piatetski-Shapiro, Automorphic forms and $ L$-functions for the unitary group, Lie group representations, II (College Park, Md., 1982/1983), Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 141-184. MR 748507 (86f:11084)
  • 5. Y. Ishikawa, On standard $ L$-function for generic cusp forms on $ {\rm U}(2,1)$, Sūrikaisekikenkyūsho Kōkyūroku (2006), no. 1468, 46-54.
  • 6. H. Jacquet, I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), no. 2, 199-214. MR 620708 (83c:22025)
  • 7. H. Koseki and T. Oda, Whittaker functions for the large discrete series representations of $ {\rm SU}(2,1)$ and related zeta integrals, Publ. Res. Inst. Math. Sci. 31 (1995), no. 6, 959-999. MR 1382562 (97d:11082)
  • 8. M. Miyauchi, On local newforms for unramified $ \mathrm {U}(2,1)$, preprint, arXiv:1105.6004, 2011.
  • 9. C. Mœglin, M.-F. Vignéras, and J. Waldspurger, Correspondances de Howe sur un corps $ p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987. MR 1041060 (91f:11040)
  • 10. B. Roberts and R. Schmidt, Local newforms for GSp(4), Lecture Notes in Mathematics, vol. 1918, Springer, Berlin, 2007. MR 2344630 (2008g:11080)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 22E50, 22E35

Retrieve articles in all journals with MSC (2010): 22E50, 22E35

Additional Information

Michitaka Miyauchi
Affiliation: Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho Nakaku Sakai, Osaka 599-8531, Japan

Keywords: $p$-adic group, local newform, $𝜖$-factor
Received by editor(s): August 1, 2011
Received by editor(s) in revised form: March 23, 2012, and April 16, 2012
Published electronically: January 4, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society