Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Closed orbits and uniform $ S$-instability in geometric invariant theory


Authors: Michael Bate, Benjamin Martin, Gerhard Röhrle and Rudolf Tange
Journal: Trans. Amer. Math. Soc. 365 (2013), 3643-3673
MSC (2010): Primary 20G15, 14L24, 20E42
Published electronically: December 27, 2012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider various problems involving the action of a reductive group $ G$ on an affine variety $ V$. We prove some general rationality results about the $ G$-orbits in $ V$. In addition, we extend fundamental results of Kempf and Hesselink regarding optimal destabilizing parabolic subgroups of $ G$ for such general $ G$-actions.

We apply our general rationality results to answer a question of Serre concerning the behaviour of his notion of $ G$-complete reducibility under separable field extensions. Applications of our new optimality results also include a construction which allows us to associate an optimal destabilizing parabolic subgroup of $ G$ to any subgroup of $ G$. Finally, we use these new optimality techniques to provide an answer to Tits' Centre Conjecture in a special case.


References [Enhancements On Off] (What's this?)

  • 1. M. Bate, B. Martin, G. Röhrle, A geometric approach to complete reducibility, Invent. Math. 161, no. 1 (2005), 177-218. MR 2178661 (2007k:20101)
  • 2. -, Complete reducibility and commuting subgroups, J. Reine Angew. Math. 621, (2008), 213-235. MR 2431255 (2009h:20051)
  • 3. -, On Tits' Centre Conjecture for fixed point subcomplexes, C. R. Acad. Sci. Paris Ser. I Math. 347, (2009) 353-356. MR 2537229 (2010i:20049)
  • 4. M. Bate, B. Martin, G. Röhrle, R. Tange, Complete reducibility and separability, Trans. Amer. Math. Soc., 362, no. 8, (2010), 4283-4311. MR 2608407 (2011i:20068)
  • 5. -, Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, Math. Z., 269, no. 3-4 (2011), 809-832. MR 2860266
  • 6. A. Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups, pp. 1-55, Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970. MR 0258838 (41:3484)
  • 7. -, Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer-Verlag, 1991. MR 1102012 (92d:20001)
  • 8. A. Borel, J. Tits, Éléments unipotents et sous-groupes paraboliques des groupes réductifs, I, Invent. Math. 12 (1971), 95-104. MR 0294349 (45:3419)
  • 9. -, Compléments à l'article: ``Groupes réductifs'', Inst. Hautes Études Sci. Publ. Math. No. 41 (1972), 253-276. MR 0315007 (47:3556)
  • 10. C.W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, Vol. XI, Interscience, John Wiley & Sons, New York-London, 1962. MR 0144979 (26:2519)
  • 11. T.L. Gómez, A. Langer, A.H.W. Schmitt, I. Sols, Moduli spaces for principal bundles in arbitrary characteristic. Adv. Math. 219, no. 4 (2008), 1177-1245. MR 2450609 (2009j:14014)
  • 12. W.H. Hesselink, Uniform instability in reductive groups, J. Reine Angew. Math. 303/304 (1978), 74-96. MR 514673 (81a:14022)
  • 13. -, Desingularizations of varieties of nullforms, Invent. Math. 55 (1979), no. 2, 141-163. MR 553706 (81b:14025)
  • 14. J.C. Jantzen, Nilpotent orbits in representation theory, in: Lie theory: Lie algebras and representations, Progress in Math. 228, Birkhaüser Boston (2004). MR 2042689 (2005c:14055)
  • 15. G.R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), 299-316. MR 506989 (80c:20057)
  • 16. J. Levy, Rationality and orbit closures, Canad. Math. Bull. 46, (2003), 204-215. MR 1981675 (2004c:14090)
  • 17. M.W. Liebeck, G.M. Seitz, Reductive subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc. no. 580 (1996). MR 1329942 (96i:20059)
  • 18. -, Variations on a theme of Steinberg, Special issue celebrating the 80th birthday of Robert Steinberg. J. Algebra 260 (2003), no. 1, 261-297. MR 1973585 (2004g:20064)
  • 19. M.W. Liebeck, D.M. Testerman, Irreducible subgroups of algebraic groups, Q. J. Math. 55 (2004), 47-55. MR 2043006 (2005b:20087)
  • 20. B. Martin, Reductive subgroups of reductive groups in nonzero characteristic, J. Algebra 262 (2003), no. 2, 265-286. MR 1971039 (2004g:20066)
  • 21. -, A normal subgroup of a strongly reductive subgroup is strongly reductive, J. Algebra 265 (2003), no. 2, 669-674. MR 1987023 (2004e:20080)
  • 22. G. McNinch, Completely reducible Lie subalgebras, Transform. Groups 12 (2007), no. 1, 127-135. MR 2308032 (2008a:17022)
  • 23. B. Mühlherr, J. Tits, The Centre Conjecture for non-exceptional buildings, J. Algebra 300 (2006), no. 2, 687-706. MR 2228217 (2007e:51018)
  • 24. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
  • 25. P. E. Newstead, Introduction to moduli problems and orbit spaces, published for the Tata Institute of Fundamental Research, Bombay, by Springer-Verlag, 1978. MR 546290 (81k:14002)
  • 26. A. Premet, Nilpotent orbits in good characteristic and the Kempf-Rousseau theory, J. Algebra 260 (2003), no. 1, 338-366. MR 1976699 (2004i:17014)
  • 27. R.W. Richardson, Conjugacy classes of $ n$-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), no. 1, 1-35. MR 952224 (89h:20061)
  • 28. G. Rousseau, Immeubles sphériques et théorie des invariants, C.R.Acad. Sci. Paris Sér. A-B 286 (1978), 247-250. MR 0506257 (58:22063)
  • 29. A.H.W. Schmitt, A closer look at semistability for singular principal bundles. Int. Math. Res. Not. 62 (2004), 3327-3366. MR 2097106 (2005h:14105)
  • 30. G.M. Seitz, Abstract homomorphisms of algebraic groups, J. London Math. Soc. (2) 56 (1997), no. 1, 104-124. MR 1462829 (99b:20077)
  • 31. J.-P. Serre, Semisimplicity and tensor products of group representations: converse theorems. With an appendix by Walter Feit, J. Algebra 194 (1997), no. 2, 496-520. MR 1467165 (98i:20008)
  • 32. -, La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs, Séminaire au Collège de France, résumé dans [37, pp. 93-98.] (1997).
  • 33. -, The notion of complete reducibility in group theory, Moursund Lectures, Part II, University of Oregon, 1998, arXiv:math/0305257v1 [math.GR].
  • 34. -, Complète réductibilité, Séminaire Bourbaki, 56ème année, 2003-2004, n$ ^{\rm o}$ 932. MR 2167207 (2006d:20084)
  • 35. T.A. Springer, Linear algebraic groups, Second edition. Progress in Mathematics, 9. Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713 (99h:20075)
  • 36. J. Tits, Buildings of spherical type and finite $ BN$-pairs, Lecture Notes in Math. 386, Springer-Verlag (1974). MR 0470099 (57:9866)
  • 37. -, Théorie des groupes, Résumé des Cours et Travaux, Annuaire du Collège de France, $ 97^{\rm e}$ année, (1996-1997), 89-102. MR 1320558

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20G15, 14L24, 20E42

Retrieve articles in all journals with MSC (2010): 20G15, 14L24, 20E42


Additional Information

Michael Bate
Affiliation: Department of Mathematics, University of York, York YO10 5DD, United Kingdom
Email: michael.bate@york.ac.uk

Benjamin Martin
Affiliation: Mathematics and Statistics Department, University of Canterbury, Private Bag 4800, Christchurch 1, New Zealand
Address at time of publication: Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 8140, New Zealand
Email: B.Martin@math.canterbury.ac.nz, Ben.Martin@auckland.ac.nz

Gerhard Röhrle
Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Email: gerhard.roehrle@rub.de

Rudolf Tange
Affiliation: School of Mathematics, Trinity College Dublin, College Green, Dublin 2, Ireland
Address at time of publication: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
Email: tanger@tcd.ie, R.Tange@exeter.ac.uk

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05739-4
PII: S 0002-9947(2012)05739-4
Keywords: Reductive group, $G$-variety, closed orbit, uniform instability, optimal cocharacter, Centre Conjecture
Received by editor(s): July 1, 2011
Received by editor(s) in revised form: October 28, 2011
Published electronically: December 27, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.