Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Homological stability for oriented configuration spaces


Author: Martin Palmer
Journal: Trans. Amer. Math. Soc. 365 (2013), 3675-3711
MSC (2010): Primary 55R80; Secondary 57N65, 20J06, 57M07
Published electronically: December 4, 2012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove (integral) homological stability for the sequences of spaces $ C_n^+ (M,X)$. These are the spaces of configurations of $ n$ points in a connected manifold of dimension at least $ 2$ which `admits a boundary', with labels in a path-connected space $ X$, and with an orientation -- an ordering of the points up to even permutations.

They are double covers of the unordered configuration spaces $ C_n (M,X)$, and indeed to prove our result we adapt methods from a paper of Randal-Williams, which proves homological stability in the unordered case. Interestingly the oriented configuration spaces stabilise more slowly than the unordered ones: the stability slope we obtain is $ \frac 13$, compared to $ \frac 12$ in the unordered case (and these are the best possible slopes in their respective cases).

This result can also be interpreted as homological stability for the unordered configuration spaces with certain twisted $ \mathbb{Z} \oplus \mathbb{Z}$-coefficients.


References [Enhancements On Off] (What's this?)

  • [Arn70a] V. I. Arnol'd, Certain topological invariants of algebraic functions, Trudy Moskov. Mat. Obšč. 21 (1970), 27-46. (Russian), English translation in [Arn70b]. MR 0274462 (43:225)
  • [Arn70b] -, On some topological invariants of algebraic functions, Trans. Moscow Math. Soc. 21 (1970), 30-52, English translation of [Arn70a].
  • [BCM93] C.-F. Bödigheimer, F. R. Cohen, and R. J. Milgram, Truncated symmetric products and configuration spaces, Math. Z. 214 (1993), no. 2, 179-216. MR 1240884 (95a:55043)
  • [BCT89] C.-F. Bödigheimer, F. Cohen, and L. Taylor, On the homology of configuration spaces, Topology 28 (1989), no. 1, 111-123. MR 991102 (90h:57031)
  • [Ber82] A. Jon Berrick, An approach to algebraic $ K$-theory, Research Notes in Mathematics, vol. 56, Pitman (Advanced Publishing Program), Boston, Mass., 1982. MR 649409 (84g:18028)
  • [Bet02] Stanislaw Betley, Twisted homology of symmetric groups, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3439-3445 (electronic). MR 1918818 (2003e:20056)
  • [BP72] Michael Barratt and Stewart Priddy, On the homology of non-connected monoids and their associated groups, Comment. Math. Helv. 47 (1972), 1-14. MR 0314940 (47:3489)
  • [Chu11] Thomas Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012), no. 2, 465-504. MR 2909770
  • [Dol62] Albrecht Dold, Decomposition theorems for $ S(n)$-complexes, Ann. of Math. (2) 75 (1962), 8-16. MR 0137113 (25:569)
  • [DT58] Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239-281. MR 0097062 (20:3542)
  • [FN62a] Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 0141126 (25:4537)
  • [FN62b] R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126. MR 0150755 (27:742)
  • [GKY96] Martin A. Guest, Andrzej Kozlowsky, and Kohhei Yamaguchi, Homological stability of oriented configuration spaces, J. Math. Kyoto Univ. 36 (1996), no. 4, 809-814. MR 1443749 (98h:55012)
  • [GMTW09] Søren Galatius, Ib Madsen, Ulrike Tillmann, and Michael Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009), no. 2, 195-239. MR 2506750 (2011c:55022)
  • [Hau78] Jean-Claude Hausmann, Manifolds with a given homology and fundamental group, Comment. Math. Helv. 53 (1978), no. 1, 113-134. MR 483534 (80m:57012)
  • [KT08] Christian Kassel and Vladimir Turaev, Braid groups, Graduate Texts in Mathematics, vol. 247, Springer, New York, 2008, with the graphical assistance of Olivier Dodane. MR 2435235 (2009e:20082)
  • [LS01] G. I. Lehrer and G. B. Segal, Homology stability for classical regular semisimple varieties, Math. Z. 236 (2001), no. 2, 251-290. MR 1815830 (2002m:57048)
  • [McC85] John McCleary, User's guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish Inc., Wilmington, DE, 1985. MR 820463 (87f:55014)
  • [McD75] Dusa McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91-107. MR 0358766 (50:11225)
  • [MT68] Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row Publishers, New York, 1968. MR 0226634 (37:2223)
  • [Nak60] Minoru Nakaoka, Decomposition theorem for homology groups of symmetric groups, Ann. of Math. (2) 71 (1960), 16-42. MR 0112134 (22:2989)
  • [Pal10] Martin Palmer, Homological stability for oriented configuration spaces, Transfer of Status dissertation, University of Oxford, December 2010.
  • [RW10] Oscar Randal-Williams, Resolutions of moduli spaces and homological stability, arXiv:0909.4278v3 [math.AT], 2010.
  • [RW11] -, Homological stability for unordered configuration spaces, arXiv:1105.5257v1 [math.AT], 2011. To appear in the Quarterly Journal of Mathematics.
  • [Seg73] Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213-221. MR 0331377 (48:9710)
  • [Seg79] -, The topology of spaces of rational functions, Acta Math. 143 (1979), no. 1-2, 39-72. MR 533892 (81c:55013)
  • [Sna74] V. P. Snaith, A stable decomposition of $ \Omega ^{n}S^{n}X$, J. London Math. Soc. (2) 7 (1974), 577-583. MR 0339155 (49:3918)
  • [Swi75] Robert M. Switzer, Algebraic topology--homotopy and homology, Springer-Verlag, New York, 1975, Die Grundlehren der mathematischen Wissenschaften, Band 212. MR 0385836 (52:6695)
  • [Zee57] E. C. Zeeman, A proof of the comparison theorem for spectral sequences, Proc. Cambridge Philos. Soc. 53 (1957), 57-62. MR 0084769 (18:918f)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 55R80, 57N65, 20J06, 57M07

Retrieve articles in all journals with MSC (2010): 55R80, 57N65, 20J06, 57M07


Additional Information

Martin Palmer
Affiliation: Mathematical Institute, University of Oxford, 24–29 St Giles’, Oxford, OX1 3LB, United Kingdom
Email: palmer@maths.ox.ac.uk

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05743-6
PII: S 0002-9947(2012)05743-6
Keywords: Configuration spaces, homology stability, alternating groups
Received by editor(s): June 23, 2011
Received by editor(s) in revised form: November 1, 2011
Published electronically: December 4, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.