Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Minimal surface systems, maximal surface systems and special Lagrangian equations


Author: Hojoo Lee
Journal: Trans. Amer. Math. Soc. 365 (2013), 3775-3797
MSC (2010): Primary 49Q05, 35J47, 35B08, 53D12
DOI: https://doi.org/10.1090/S0002-9947-2012-05786-2
Published electronically: November 7, 2012
MathSciNet review: 3042603
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend Calabi's correspondence between minimal graphs in Euclidean space $ {\mathbb{R}}^{3}$ and maximal graphs in Lorentz-Minkowski space $ {\mathbb{L}}^{3}$. We establish the twin correspondence between $ 2$-dimensional minimal graphs in Euclidean space $ {\mathbb{R}}^{n+2}$ carrying a positive area-angle function and $ 2$-dimension-
al maximal graphs in pseudo-Euclidean space $ {\mathbb{R}}^{n+2}_{n}$ carrying the same positive area-angle function.

We generalize Osserman's Lemma on degenerate Gauss maps of entire $ 2$-dimensional minimal graphs in $ {\mathbb{R}}^{n+2}$ and offer several Bernstein-Calabi type theorems. A simultaneous application of the Harvey-Lawson Theorem on special Lagrangian equations and our extended Osserman's Lemma yield a geometric proof of Jörgens' Theorem on the $ 2$-variable unimodular Hessian equation.

We introduce the correspondence from $ 2$-dimensional minimal graphs in $ {\mathbb{R}}^{n+2}$ to special Lagrangian graphs in $ {\mathbb{C}}^{2}$, which induces an explicit correspondence from $ 2$-variable symplectic Monge-Ampère equations to the $ 2$-variable unimodular Hessian equation.


References [Enhancements On Off] (What's this?)

  • 1. H. Araújo and M. L. Leite, How many maximal surfaces do correspond to one minimal surface?, Math. Proc. Camb. Phil. Soc. 146 (2009), 165-175. MR 2461875 (2010b:53104)
  • 2. H. Anciaux, Minimal submanifolds in pseudo-Riemannian geometry, World Scientific, (2010), 89-160. MR 2722116
  • 3. H. Anciaux, Minimal Lagrangian submanifolds in indefinite complex space, arXiv:1011.3756.
  • 4. L. J. Alías and B. Palmer, A duality result between the minimal surface equation and the maximal surface equation, An. Acad. Bras. Cienc. 73 (2001), no. 2, 161-164. MR 1833778 (2002c:53007)
  • 5. S. Brendle and M. Warren, A boundary value problem for minimal Lagrangian graphs, J. Differential Geom. 84 (2010), 267-287. MR 2652462 (2011g:53164)
  • 6. E. Calabi, Examples of Bernstein problems for some non-linear equations, Proc. Sympos. Pure Math. 15 (1970), Amer. Math. Soc., Providence, RI, 223-230. MR 0264210 (41:8806)
  • 7. I. Castro and F. Urbano, On a Minimal Lagrangian Submanifold of $ \mathbb{C}^{n}$ Foliated by Spheres, Mich. Math. J. 46 (1999), 71-82. MR 1682888 (2000b:53079)
  • 8. M. Chamberland, Characterizing two-dimensional maps whose Jacobians have constant eigenvalues, Canad. Math. Bull. 46 (2003), no. 3, 323-331. MR 1994859 (2004h:26014)
  • 9. S.-S. Chern and R. Osserman, Complete minimal surfaces in Euclidean $ n$-space, J. Anal. Math. 19 (1967), 15-34. MR 0226514 (37:2103)
  • 10. Y. Dong, On Indefinite Special Lagrangian Submanifolds in Indefinite Complex Euclidean Spaces, J. of Geom. and Physics, 59 (2009), 710-726. MR 2510164 (2010e:53091)
  • 11. L. Fu, An analogue of Bernstein's theorem, Houston J. Math. 24 (1998), 415-419. MR 1686614 (2000c:53006)
  • 12. R. Harvey and H. Lawson, Jr., Calibrated Geometries, Acta Math. 148 (1982), 47-157. MR 666108 (85i:53058)
  • 13. R. Harvey and H. Lawson, Jr., Split Special Lagrangian Geometry, arXiv:1007.0450.
  • 14. Th. Hasanis, A. Savas-Halilaj, and Th. Vlachos, Minimal graphs in $ {\mathbb{R}}^{4}$ with bounded Jacobians, Proc. Amer. Math. Soc. 137 (2009), 3463-3471. MR 2515415 (2010f:53011)
  • 15. D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc., vol. 28, no. 236, 1980. MR 587748 (82b:53012)
  • 16. D. A. Hoffman and R. Osserman, The Gauss map of surfaces in $ {\mathbb{R}}^{n}$, J. Differential Geom. 18 (1983), 733-754. MR 730925 (85i:53059)
  • 17. K. Jörgens, Uber die Losungen der Differentialgleichung $ rt-s^{2}=1$, Math. Ann. 127 (1954), 130-134. MR 0062326 (15:961e)
  • 18. J. Jost and Y. L. Xin, Bernstein type theorems for higher codimension, Calc. Var. Partial Differential Equations, 9 (1999), no. 4, 277-296. MR 1731468 (2001e:53010)
  • 19. S. Kawai, A theorem of Bernstein type for minimal surfaces in $ {\mathbb{R}}^{4}$, Tohoku Math. J. (2) 36 (1984), 377-384. MR 756022 (86a:53007)
  • 20. Y.-H. Kim, R. J. McCann and M. Warren, Pseudo-Riemannian geometry calibrates optimal transportation, Math. Res. Lett. 17 (2010), 1183-1197. MR 2729641 (2012b:49067)
  • 21. F. J. López, R. López and R. Souam, Maximal surfaces of Riemann type in Lorentz-Minkowski space $ {\mathbb{L}}^{3}$, Michigan Math. J. 47 (2000), no. 3, 469-497. MR 1813540 (2002c:53009)
  • 22. H. B. Lawson and R. Osserman, Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system, Acta Math. 139 (1977), no. 1-2, 1-17. MR 452745 (80b:35059)
  • 23. Y.-I. Lee and M.-T. Wang, A stability criterion for nonparametric minimal submanifolds, Manuscripta Math. 112 (2003), no. 2, 161-169. MR 2064913 (2005b:53096)
  • 24. Y.-I. Lee and M.-T. Wang, A note on the stability and uniqueness for solutions to the minimal surface system, Math. Res. Lett. 15 (2008), no. 1, 197-206. MR 2367184 (2008m:53016)
  • 25. C. Mese, The Bernstein problem for complete Lagrangian stationary surfaces, Proc. Amer. Math. Soc. 129 (2001), no. 2, 573-580. MR 1707155 (2001e:53084)
  • 26. J. Mealy, Volume maximization in semi-Riemannian manifolds, Indiana Univ. Math. J. 40 (1991), 793-814. MR 1129330 (92k:53123)
  • 27. B. Nelli and M. Soret, The state of the art of Bernstein's problem, Math. Cont. 29 (2005), 69-77. MR 2196780 (2007b:53012)
  • 28. L. Ni, A Bernstein type theorem for minimal volume preserving maps, Proc. Amer. Math. Soc. 130 (2002), 1207-1210. MR 1873798 (2002i:53078)
  • 29. R. Osserman, Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), 1092-1120. MR 0276875 (43:2615)
  • 30. R. Osserman, Some properties of solutions to the minimal surface system for arbitrary codimension, Proc. of Symp. in Pure Math., Vol. XV, Global Analysis, A.M.S., Providence, 1970, 283-291. MR 0262946 (41:7551)
  • 31. R. Osserman, Properties of solutions of the minimal surface equation in higher codimension, Minimal Submanifolds and Geodesics, Kaigai Publication, Tokyo, 1978, 163-172. MR 574263 (81h:53008)
  • 32. R. Osserman, A survey of minimal surfaces, Second edition, Dover Publications, Inc., New York, 1986, 23-26. MR 852409 (87j:53012)
  • 33. R. Schoen, The role of harmonic mappings in rigidity and deformation problems, Complex Geometry (Osaka 1990), Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993, 179-200. MR 1201611 (94g:58055)
  • 34. L. Simon, A Hölder estimate for quasiconformal maps between surfaces in Euclidean space, Acta Math. 139 (1977), 19-51. MR 452746 (81h:30026)
  • 35. M.-P. Tsui and M.-T. Wang, A Bernstein type result for special Lagrangian submanifolds, Math. Res. Lett. 9 (2002), no. 4, 529-535. MR 1928873 (2003k:53059)
  • 36. M.-T. Wang, On graphic Bernstein type results in higher codimension, Trans. Amer. Math. Soc. 355 (2003), no. 1, 265-271. MR 1928088 (2003g:58020)
  • 37. M.-T. Wang, Interior gradient bounds for solutions to the minimal surface system, Amer. J. Math. 126 (2004), no.4, 921-934. MR 2075488 (2005f:35117)
  • 38. M.-T. Wang, The Dirichlet problem for the minimal surface system in arbitrary codimension, Comm. Pure. Appl. Math. 57 (2004), no. 2, 267-281. MR 2012810 (2004h:35081)
  • 39. M. Warren, Calibrations associated to Monge-Ampère equations, Trans. Amer. Math. Soc. 362 (2010), 3947-3962. MR 2608392 (2011d:53109)
  • 40. Y. Yuan, A Bernstein problem for special Lagrangian equations, Invent. Math. 150 (2002), no. 1, 117-125. MR 1930884 (2003k:53060)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 49Q05, 35J47, 35B08, 53D12

Retrieve articles in all journals with MSC (2010): 49Q05, 35J47, 35B08, 53D12


Additional Information

Hojoo Lee
Affiliation: Department of Geometry and Topology, University of Granada, Granada, Spain
Address at time of publication: School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongryangri 2-dong, Dongdaemun-gu, Seoul 130-722, Korea
Email: ultrametric@gmail.com, autumn@kias.re.kr

DOI: https://doi.org/10.1090/S0002-9947-2012-05786-2
Keywords: Minimal submanifold, special Lagrangian equation, entire solution
Received by editor(s): December 27, 2010
Received by editor(s) in revised form: July 20, 2011, and November 11, 2011
Published electronically: November 7, 2012
Additional Notes: This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education, Science and Technology) [NRF-2011-357-C00007] and in part by 2010 Korea-France STAR Program.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society