On quandle homology groups of Alexander quandles of prime order
Author:
Takefumi Nosaka
Journal:
Trans. Amer. Math. Soc. 365 (2013), 34133436
MSC (2010):
Primary 20G10, 55N35, 58H10; Secondary 57Q45, 57M25, 55S20
Published electronically:
January 30, 2013
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we determine the integral quandle homology groups of Alexander quandles of prime order. As a special case, this settles the delayed Fibonacci conjecture by M. Niebrzydowski and J. H. Przytycki from their 2009 paper. Further, we determine the cohomology group of the Alexander quandle and obtain relatively simple presentations of all higher degree cocycles which generate the cohomology group. Finally, we prove that the integral quandle homology of a finite connected Alexander quandle is annihilated by the order of the quandle.
 [AS]
Soichiro
Asami and Shin
Satoh, An infinite family of noninvertible surfaces in
4space, Bull. London Math. Soc. 37 (2005),
no. 2, 285–296. MR 2119028
(2005k:57044), http://dx.doi.org/10.1112/S0024609304003832
 [CJKLS]
J.
Scott Carter, Daniel
Jelsovsky, Seiichi
Kamada, Laurel
Langford, and Masahico
Saito, Quandle cohomology and statesum
invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3947–3989. MR 1990571
(2005b:57048), http://dx.doi.org/10.1090/S0002994703030460
 [CKS]
J.
Scott Carter, Seiichi
Kamada, and Masahico
Saito, Geometric interpretations of quandle homology, J. Knot
Theory Ramifications 10 (2001), no. 3, 345–386.
MR
1825963 (2002h:57009), http://dx.doi.org/10.1142/S0218216501000901
 [Cla]
F. J.B. J. Clauwens, The algebra of rack and quandle cohomology, arXiv:math/1004. 4423.
 [EGS]
Pavel
Etingof, Alexander
Soloviev, and Robert
Guralnick, Indecomposable settheoretical solutions to the quantum
YangBaxter equation on a set with a prime number of elements, J.
Algebra 242 (2001), no. 2, 709–719. MR 1848966
(2002e:20049), http://dx.doi.org/10.1006/jabr.2001.8842
 [FRS]
Roger
Fenn, Colin
Rourke, and Brian
Sanderson, Trunks and classifying spaces, Appl. Categ.
Structures 3 (1995), no. 4, 321–356. MR 1364012
(96i:57023), http://dx.doi.org/10.1007/BF00872903
 [LN]
R.
A. Litherland and Sam
Nelson, The Betti numbers of some finite racks, J. Pure Appl.
Algebra 178 (2003), no. 2, 187–202. MR 1952425
(2004a:57006), http://dx.doi.org/10.1016/S00224049(02)002116
 [M1]
Takuro
Mochizuki, Some calculations of cohomology groups of finite
Alexander quandles, J. Pure Appl. Algebra 179 (2003),
no. 3, 287–330. MR 1960136
(2004b:55013), http://dx.doi.org/10.1016/S00224049(02)003237
 [M2]
Takuro
Mochizuki, The 3cocycles of the Alexander quandles
𝔽_{𝕢}[𝕋]/(𝕋𝜔), Algebr. Geom.
Topol. 5 (2005), 183–205 (electronic). MR 2135551
(2006e:57019), http://dx.doi.org/10.2140/agt.2005.5.183
 [No]
T. Nosaka, Quandle homotopy invariants of knotted surfaces, arXiv:math/1011. 6035.
 [NP]
M.
Niebrzydowski and J.
H. Przytycki, Homology of dihedral quandles, J. Pure Appl.
Algebra 213 (2009), no. 5, 742–755. MR 2494367
(2010a:18014), http://dx.doi.org/10.1016/j.jpaa.2008.09.010
 [O]
T.
Ohtsuki, Problems on invariants of knots and 3manifolds,
Invariants of knots and 3manifolds (Kyoto, 2001) Geom. Topol. Monogr.,
vol. 4, Geom. Topol. Publ., Coventry, 2002, pp. i–iv,
377–572. With an introduction by J. Roberts. MR 2065029
(2005c:57014), http://dx.doi.org/10.2140/gtm.2002.4
 [AS]
 S. Asami, S. Satoh, An infinite family of noninvertible surfaces in space, Bull. London Math. Soc. 37 (2005), 285296. MR 2119028 (2005k:57044)
 [CJKLS]
 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, Quandle cohomology and statesum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003) 39473989. MR 1990571 (2005b:57048)
 [CKS]
 J. S. Carter, S. Kamada, M. Saito, Geometric interpretations of quandle homology, J. Knot Theory Ramifications 10 (2001) 345386. MR 1825963 (2002h:57009)
 [Cla]
 F. J.B. J. Clauwens, The algebra of rack and quandle cohomology, arXiv:math/1004. 4423.
 [EGS]
 P. Etingof, R. Guralnick, A. Soloviev, Indecomposable settheoretical solutions to the quantum YangBaxter equation on a set with a prime number of elements, J. Algebra 242 (2001) 709719. MR 1848966 (2002e:20049)
 [FRS]
 R. Fenn, C. Rourke, B. Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3 (1995) 321356. MR 1364012 (96i:57023)
 [LN]
 R. A. Litherland, S. Nelson, The Betti numbers of some finite racks, J. Pure Appl. Algebra 178, 2003, 187202. MR 1952425 (2004a:57006)
 [M1]
 T. Mochizuki, Some calculations of cohomology groups of finite Alexander quandles, J. Pure Appl. Algebra 179 (2003) 287330. MR 1960136 (2004b:55013)
 [M2]
 , The cocycles of the Alexander quandles , Algebraic and Geometric Topology. 5 (2005) 183205. MR 2135551 (2006e:57019)
 [No]
 T. Nosaka, Quandle homotopy invariants of knotted surfaces, arXiv:math/1011. 6035.
 [NP]
 M. Niebrzydowski, J. H. Przytycki. Homology of dihedral quandles, J. Pure Appl. Algebra 213 (2009) 742755. MR 2494367 (2010a:18014)
 [O]
 T. Ohtsuki (ed.), Problems on invariants of knots and manifolds, Geom. Topol. Monogr., 4, Invariants of knots and 3manifolds (Kyoto, 2001), 377572, Geom. Topol. Publ., Coventry, 2002. MR 2065029 (2005c:57014)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
20G10,
55N35,
58H10,
57Q45,
57M25,
55S20
Retrieve articles in all journals
with MSC (2010):
20G10,
55N35,
58H10,
57Q45,
57M25,
55S20
Additional Information
Takefumi Nosaka
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Sakyoku, Kyoto, 6068502, Japan
Email:
nosaka@kurims.kyotou.ac.jp
DOI:
http://dx.doi.org/10.1090/S000299472013057546
PII:
S 00029947(2013)057546
Keywords:
Rack,
quandle,
homology,
cohomology,
knot
Received by editor(s):
November 17, 2009
Received by editor(s) in revised form:
April 1, 2011
Published electronically:
January 30, 2013
Article copyright:
© Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
