Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Maximal exponents of polyhedral cones (III)


Authors: Raphael Loewy, Micha A. Perles and Bit-Shun Tam
Journal: Trans. Amer. Math. Soc. 365 (2013), 3535-3573
MSC (2010): Primary 15B48, 47A65, 05C50, 52B99
Published electronically: March 18, 2013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a proper (i.e., closed, pointed, full, convex) cone in $ \mathbb{R}^n$. An $ n\times n$ matrix $ A$ is said to be $ K$-primitive if $ AK\subseteq K$ and there exists a positive integer $ k$ such that $ A^k(K \setminus \{ 0 \}) \subseteq $ int$ K$; the least such $ k$ is referred to as the exponent of $ A$ and is denoted by $ \gamma (A)$. For a polyhedral cone $ K$, the maximum value of $ \gamma (A)$, taken over all $ K$-primitive matrices $ A$, is denoted by $ \gamma (K)$. It is proved that for any positive integers $ m,n, 3 \le n \le m$, the maximum value of $ \gamma (K)$, as $ K$ runs through all $ n$-dimensional polyhedral cones with $ m$ extreme rays, equals $ (n-1)(m-1)+\frac {1}{2}\left (1+(-1)^{(n-1)m}\right )$. For the $ 3$-dimensional case, the cones $ K$ and the corresponding $ K$-primitive matrices $ A$ such that $ \gamma (K)$ and $ \gamma (A)$ attain the maximum value are identified up to respectively linear isomorphism and cone-equivalence modulo positive scalar multiplication.


References [Enhancements On Off] (What's this?)

  • 1. G.P. Barker, Theory of cones, Linear Algebra Appl. 39 (1981), 263-291. MR 625256 (83e:15022)
  • 2. R.W. Barnard, W. Dayawansa, K. Pearce and D. Weinberg, Polynomials with nonnegative coefficients, Proc. Amer. Math. Soc. 113 (1991), 77-85. MR 1072329 (91k:30007)
  • 3. P. Borwein and T. Erd $ \acute {e}$lyi, Polynomials and polynomial inequalities, New York, Springer-Verlag, 1995. MR 1367960 (97e:41001)
  • 4. G.R. Belitskii and Yu.I. Lyubich, Matrix norms and their applications, English transl., Birkhäuser Verlag, Basel, 1988. MR 1015711 (90g:15003)
  • 5. A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM edition, SIAM, Philadelphia, 1994. MR 1298430 (95e:15013)
  • 6. R.A. Brualdi and H.J. Ryser, Combinatorial matrix theory, Cambridge University Press, Cambridge, 1991. MR 1130611 (93a:05087)
  • 7. G.P. Barker and B.S. Tam, Graphs for cone preserving maps, Linear Algebra Appl. 37 (1981), 199-204. MR 636222 (84e:05053)
  • 8. R. Evans and J. Greene, Polynomials with nonnegative coefficients whose zeros have modulus one, SIAM J. Math. Anal. 22 (1991), 1173-1182. MR 1112073 (92d:33043)
  • 9. M. Fiedler and V. Pták, Diagonals of convex sets, Czechoslovak Math. J. 28 (103)(1978), 25-44. MR 0467532 (57:7388)
  • 10. D. Gale, Neighborly and cyclic polytopes, Proceedings of Symposia in Pure Mathematics, Vol. 7, Convexity, Amer. Math. Soc., 1963, 225-232. MR 0152944 (27:2915)
  • 11. V.S. Grinberg, Wielandt-type bounds for primitive matrices of partially ordered sets, Mat. Zametki 45 (1989), 30-35 (Russian); translation in Math. Notes 45 (1989), 450-454. MR 1019033 (90k:06007)
  • 12. B. Grünbaum, Convex Polytopes, Interscience, London, 1967; revised edition (V. Klee and P.Kleinschmidt, eds.), Graduate Texts in Mathematics, Springer-Verlag, 2003. MR 0226496 (37:2085)
  • 13. P. Gritzmann, V. Klee and B.-S. Tam, Cross-positive matrices revisited, Linear Algebra Appl. 223/224 (1995), 285-305. MR 1340696 (97k:15048)
  • 14. L. Hogben, editor, Handbook of Linear Algebra, Chapman & Hall/CRC, 2006. MR 2279160 (2007j:15001)
  • 15. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985. MR 832183 (87e:15001)
  • 16. R.E. Hartwig and M. Neumann, Bounds on the exponent of primitivity which depend on the spectrum and the minimal polynomial, Linear Algebra Appl. 184 (1993), 103-122. MR 1209386 (94c:15025)
  • 17. S. Kirkland, An eigenvalue region for Leslie matrices, SIAM J. Matrix Anal. & Appl. 13 (1992), 507-529. MR 1152766 (92k:15025)
  • 18. S. Kirkland, On the spectrum of a Leslie matrix with a near-periodic fecundity pattern, Linear Algebra Appl. 178 (1993), 261-279. MR 1197508 (93m:92018)
  • 19. S. Kirkland, A note on the eigenvalues of a primitive matrix with large exponent, Linear Algebra Appl. 253 (1997), 103-112. MR 1431168 (97m:15012)
  • 20. P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd edition, Academic Press, New York, 1985. MR 792300 (87a:15001)
  • 21. R. Loewy and B.-S. Tam, Maximal exponents of polyhedral cones (I), J. Math. Anal. Appl. 365 (2010), 570-583. MR 2587059 (2011a:15056)
  • 22. R. Loewy and B.-S. Tam, Maximal exponents of polyhedral cones (II), Linear Algebra Appl. 432 (2010), 2861-2878. MR 2639250 (2011b:15084)
  • 23. I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, Oxford, 1979. MR 553598 (84g:05003)
  • 24. C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000. MR 1777382
  • 25. J. Marík and V. Pták, Norms, spectra and combinatorial properties of matrices, Czechoslovak Math. J. 10 (1960), 181-196. MR 0120243 (22:11000)
  • 26. Stewart W. Neufeld, A diameter bound on the exponent of a primitive directed graph, Linear Algebra Appl. 245 (1996), 27-47. MR 1404168 (97e:05147)
  • 27. M.A. Perles, Critical Exponents of Convex Bodies, Ph.D. thesis, Hebrew University, August 1964, 169+VIII pages. (Hebrew, with English summary.)
  • 28. M.A. Perles, Critical exponents of convex sets, in: Proceedings of the Colloquium on Convexity (Copenhagen, 1965), Københavns Univ. Mat. Inst., Copenhagen (1967), pp. 221-228. MR 0217571 (36:660)
  • 29. V. Pták, Critical exponents, in: Handbook of Convex Geometry, Vol. A,B, 1237-1257, North-Holland, Amsterdam, 1993. MR 1243008 (94k:47006)
  • 30. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. MR 0274683 (43:445)
  • 31. B.E. Sagan, The symmetric group: Representations, combinatorial algorithms, and symmetric functions, Wadsworth & Brooks/Cole, Pacific Grove, 1991. MR 1093239 (93f:05102)
  • 32. R.F. Scott, Note on a theorem of Prof. Cayley, Messeng. Math. 8 (1879), 155-157.
  • 33. J. Shen, The proof of a conjecture about the exponent of primitive matrices, Linear Algebra Appl. 216 (1995), 185-203. MR 1319984 (96b:15047)
  • 34. J. Shen, A bound on the exponent of primitivity in terms of diameter, Linear Algebra Appl. 244 (1996), 21-33. MR 1403273 (97f:15042)
  • 35. B.-S. Tam, On the distinguished eigenvalues of a cone-preserving map, Linear Algebra Appl. 131 (1990), 17-37. MR 1057062 (91d:15040)
  • 36. B.-S. Tam, On the structure of the cone of positive operators, Linear Algebra Appl. 167 (1992), 65-85. MR 1155442 (93f:15019)
  • 37. B.-S. Tam, A cone-theoretic approach to the spectral theory of positive linear operators: The finite-dimensional case, Taiwanese J. Math. 5 (2001), 207-277. MR 1832167 (2002e:15020)
  • 38. B.-S. Tam, The Perron generalized eigenspace and the spectral cone of a cone-preserving map, Linear Algebra Appl. 393 (2004), 375-429. MR 2098599 (2005h:15066)
  • 39. B.-S. Tam, On local Perron-Frobenius theory, in preparation.
  • 40. B.-S. Tam and G.P. Barker, Graphs and irreducible cone preserving maps, Linear and Multilinear Algebra 31 (1992), 19-25. MR 1199037 (94c:15028)
  • 41. B.-S. Tam and H. Schneider, On the core of a cone-preserving map, Trans. Amer. Math. Soc. 343 (1994), 479-524. MR 1242787 (94h:15011)
  • 42. B.-S. Tam and H. Schneider, On the invariant faces associated with a cone-preserving map, Trans. Amer. Math. Soc. 353 (2001), 209-245. MR 1707205 (2001f:15024)
  • 43. B.-S. Tam and H. Schneider, Linear equations over cones and Collatz-Wielandt numbers, Linear Algebra Appl. 363 (2003), 295-332. MR 1969074 (2004a:15033)
  • 44. B.-S. Tam and H. Schneider, Matrices leaving a cone invariant, in: Handbook of Linear Algebra, Chapter 26, edited by Leslie Hogben, Chapman & Hall/CRC, 2007. MR 2279160
  • 45. B.-S. Tam and S.-F. Wu, On the Collatz-Wielandt sets associated with a cone-preserving map, Linear Algebra Appl. 125 (1989), 77-95. MR 1024484 (90i:15021)
  • 46. H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Zeit. 52 (1950), 642-645. MR 0035265 (11:710g)
  • 47. G.M. Ziegler, Lectures on Polytopes, Springer-Verlag, 1995. MR 1311028 (96a:52011)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 15B48, 47A65, 05C50, 52B99

Retrieve articles in all journals with MSC (2010): 15B48, 47A65, 05C50, 52B99


Additional Information

Raphael Loewy
Affiliation: Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel
Email: loewy@techunix.technion.ac.il

Micha A. Perles
Affiliation: Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
Email: perles@math.huji.ac.il

Bit-Shun Tam
Affiliation: Department of Mathematics, Tamkang University, Tamsui, Taiwan 251, Republic of China
Email: bsm01@mail.tku.edu.tw

DOI: http://dx.doi.org/10.1090/S0002-9947-2013-05879-5
PII: S 0002-9947(2013)05879-5
Keywords: Cone-preserving map, $K$-primitive matrix, Exponents, polyhedral cone, exp-maximal cone, exp-maximal $K$-primitive matrix, cone-equivalence
Received by editor(s): August 2, 2011
Published electronically: March 18, 2013
Additional Notes: The third author (the corresponding author) was supported by the National Science Council of the Republic of China (Grant No. NSC 98–2115–M–032 –007 –MY3)
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.