Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The classification of almost simple $ \tfrac{3}{2}$-transitive groups


Authors: John Bamberg, Michael Giudici, Martin W. Liebeck, Cheryl E. Praeger and Jan Saxl
Journal: Trans. Amer. Math. Soc. 365 (2013), 4257-4311
MSC (2010): Primary 20B05, 20B15
DOI: https://doi.org/10.1090/S0002-9947-2013-05758-3
Published electronically: March 12, 2013
MathSciNet review: 3055696
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A finite transitive permutation group is said to be $ \frac {3}{2}$-transitive if all the nontrivial orbits of a point stabiliser have the same size greater than 1. Examples include the 2-transitive groups, Frobenius groups and several other less obvious ones. We prove that $ \frac {3}{2}$-transitive groups are either affine or almost simple, and classify the latter. One of the main steps in the proof is an arithmetic result on the subdegrees of groups of Lie type in characteristic $ p$: with some explicitly listed exceptions, every primitive action of such a group is either 2-transitive, or has a subdegree divisible by $ p$.


References [Enhancements On Off] (What's this?)

  • 1. Seyed Hassan Alavi, Triple factorisations of the general linear group by maximal parabolic subgroups, preprint.
  • 2. Seyed Hassan Alavi, John Bamberg, and Cheryl E. Praeger, Triple factorisations of classical groups by maximal parabolic subgroups and their associated geometries, preprint.
  • 3. M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469-514. MR 746539 (86a:20054)
  • 4. Michael Aschbacher and Gary M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1-91. MR 0422401 (54:10391)
  • 5. Eiichi Bannai, Shen Hao, and Sung-Yell Song, Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points, J. Combin. Theory Ser. A 54 (1990), no. 2, 164-200. MR 1059994 (91k:20047)
  • 6. Áron Bereczky, Maximal overgroups of Singer elements in classical groups, J. Algebra 234 (2000), no. 1, 187-206. MR 1799483 (2002a:20049)
  • 7. Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system I: The user language, J. Symb. Comp. 24 3/4 (1997), 235-265, Also see the Magma home page at http://www.maths.usyd.edu.au:8000/u/magma/. MR 1484478
  • 8. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 18, Springer-Verlag, Berlin, 1989. MR 1002568 (90e:05001)
  • 9. Timothy C. Burness, Fixed point ratios in actions in finite classical groups. II, J. Algebra 309 (2007), no. 1, 80-138. MR 2301234 (2008a:20003)
  • 10. Timothy C. Burness, Robert Guralnick, and Jan Saxl, Base sizes for finite classical groups, I, in preparation.
  • 11. Timothy C. Burness, Robert M. Guralnick, and Jan Saxl, On base sizes for symmetric groups, Bull. London Math. Soc. 43 (2011), 386-391. MR 2781219
  • 12. Timothy C. Burness, Martin W. Liebeck, and Aner Shalev, Base sizes for simple groups and a conjecture of Cameron, Proc. Lond. Math. Soc. (3) 98 (2009), no. 1, 116-162. MR 2472163 (2009m:20001)
  • 13. Timothy C. Burness, E.A. O'Brien, and Robert A. Wilson, Base sizes for sporadic simple groups, Israel J. Math. 177 (2010), 307-334. MR 2684423 (2011j:20035)
  • 14. W. Burnside, Theory of groups of finite order, Cambridge University Press, 1897.
  • 15. Peter J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), no. 1, 1-22. MR 599634 (83m:20008)
  • 16. -, Permutation groups, London Mathematical Society Student Texts, vol. 45, Cambridge University Press, Cambridge, 1999. MR 1721031 (2001c:20008)
  • 17. A. R. Camina and J. P. J. McDermott, On $ \frac {3}{2}$-transitive Frobenius regular groups, J. London Math. Soc. (2) 20 (1979), no. 2, 205-214. MR 551446 (80j:20001)
  • 18. R. Carter, Conjugacy classes in the Weyl group, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Springer Lecture Notes 131, Springer, Berlin, 1970, pp. 297-318. MR 0269749 (42:4644)
  • 19. R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59. MR 0318337 (47:6884)
  • 20. Roger W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1985. MR 794307 (87d:20060)
  • 21. Arjeh M. Cohen, Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. London Math. Soc. (3) 64 (1992), no. 1, 21-48. MR 1132853 (92m:20012)
  • 22. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985. MR 827219 (88g:20025)
  • 23. Charles W. Curtis, William M. Kantor, and Gary M. Seitz, The $ 2$-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59. MR 0422440 (54:10429)
  • 24. John D. Dixon, Permutation representations and rational irreducibility, Bull. Austral. Math. Soc. 71 (2005), no. 3, 493-503. MR 2150939 (2006c:20012)
  • 25. The GAP Group, GAP--Groups, Algorithms, and Programming, Version 4.4.12, 2008.
  • 26. Michael Giudici, Cai Heng Li, Cheryl E. Praeger, Ákos Seress, and Vladimir Trofimov, On minimal subdegrees of finite primitive permutation groups, Finite geometries, groups, and computation, Walter de Gruyter GmbH & Co. KG, Berlin, 2006, pp. 75-93. MR 2258002 (2007h:20002)
  • 27. Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple $ k$-groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. MR 1490581 (98j:20011)
  • 28. Christoph Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II, J. Algebra 93 (1985), no. 1, 151-164. MR 780488 (86k:20046)
  • 29. D. G. Higman and J. E. McLaughlin, Geometric $ ABA$-groups, Illinois J. Math. 5 (1961), 382-397. MR 0131216 (24:A1069)
  • 30. Derek F. Holt and Colva M. Roney-Dougal, Constructing maximal subgroups of classical groups, LMS J. Comput. Math. 8 (2005), 46-79 (electronic). MR 2123130 (2005k:20027)
  • 31. Robert B. Howlett, On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1973/74), 125-135. MR 0360781 (50:13228)
  • 32. N. Inglis, Classical groups, multiplicity free representations and distance-transitive graphs, Ph.D. thesis, Univ. of Cambridge, 1986.
  • 33. J. P. James, Two point stabilisers of partition actions of linear groups, J. Algebra 297 (2006), no. 2, 453-469. MR 2209270 (2007b:20099)
  • 34. Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341 (91g:20001)
  • 35. Peter B. Kleidman, The maximal subgroups of the finite $ 8$-dimensional orthogonal groups $ {\mathrm {P}\Omega }^+_8(q)$ and of their automorphism groups, J. Algebra 110 (1987), 173-242. MR 904187 (88i:20070)
  • 36. L. G. Kovács, Primitive subgroups of wreath products in product action, Proc. London Math. Soc. (3) 58 (1989), no. 2, 306-322. MR 977479 (90a:20008)
  • 37. R. Lawther and J. Saxl, On the actions of finite groups of Lie type on the cosets of subfield subgroups and their twisted analogues, Bull. London Math. Soc. 21 (1989), no. 5, 449-455. MR 1005820 (90e:20042)
  • 38. Ross Lawther, Martin W. Liebeck, and Gary M. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, Pacific J. Math. 205 (2002), no. 2, 393-464. MR 1922740 (2003g:20004)
  • 39. -, Fixed point spaces in actions of exceptional algebraic groups, Pacific J. Math. 205 (2002), no. 2, 339-391. MR 1922739 (2003g:20080)
  • 40. Martin W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. (3) 54 (1987), no. 3, 477-516. MR 879395 (88m:20004)
  • 41. Martin W. Liebeck, Cheryl E. Praeger, and Jan Saxl, On the $ 2$-closures of finite permutation groups, J. London Math. Soc. (2) 37 (1988), no. 2, 241-252. MR 928521 (89b:20009)
  • 42. -, Primitive permutation groups with a common suborbit, and edge-transitive graphs, Proc. London Math. Soc. (3) 84 (2002), no. 2, 405-438. MR 1881397 (2002j:20007)
  • 43. Martin W. Liebeck and Jan Saxl, The primitive permutation groups of odd degree, J. London Math. Soc. (2) 31 (1985), no. 2, 250-264. MR 809946 (87c:20007)
  • 44. -, The finite primitive permutation groups of rank three, Bull. London Math. Soc. 18 (1986), no. 2, 165-172. MR 818821 (87i:20007)
  • 45. Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, On the overgroups of irreducible subgroups of the finite classical groups, Proc. London Math. Soc. (3) 55 (1987), no. 3, 507-537. MR 907231 (88i:20071)
  • 46. -, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 65 (1992), no. 2, 297-325. MR 1168190 (93e:20026)
  • 47. Martin W. Liebeck and Gary M. Seitz, Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Math. Surveys and Monographs, 180, Amer. Math. Soc., Providence, RI, 2012. MR 2883501
  • 48. -, Subgroups generated by root elements in groups of Lie type, Ann. of Math. (2) 139 (1994), no. 2, 293-361. MR 1274094 (95d:20078)
  • 49. -, On finite subgroups of exceptional algebraic groups, J. Reine Angew. Math. 515 (1999), 25-72. MR 1717629 (2000j:20084)
  • 50. -, A survey of maximal subgroups of exceptional groups of Lie type, Groups, combinatorics & geometry (Durham, 2001), World Sci. Publ., River Edge, NJ, 2003, pp. 139-146. MR 1994964 (2004f:20089)
  • 51. Martin W. Liebeck and Aner Shalev, Simple groups, permutation groups, and probability, J. Amer. Math. Soc. 12 (1999), no. 2, 497-520. MR 1639620 (99h:20004)
  • 52. E. Maillet, Sur les isomorphes holoédriques et transitifs des groups symétriques ou alternés, J. Math. Pures Appl. 5 (1895), 5-34.
  • 53. John P. J. McDermott, Characterisations of some $ \frac {3}{2}$-transitive groups, Math. Z. 120 (1971), 204-210. MR 0294474 (45:3544)
  • 54. Kenzo Mizuno, The conjugate classes of Chevalley groups of type $ E\sb {6}$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 3, 525-563. MR 0486170 (58:5951)
  • 55. -, The conjugate classes of unipotent elements of the Chevalley groups $ E\sb {7}$ and $ E\sb {8}$, Tokyo J. Math. 3 (1980), no. 2, 391-461. MR 605099 (82m:20046)
  • 56. M. E. Muzychuk and I. N. Ponomarenko, On pseudocyclic association schemes, arXiv:0910.0682v1.
  • 57. Peter M. Neumann and Cheryl E. Praeger, An inequality for tactical configurations, Bull. London Math. Soc. 28 (1996), no. 5, 471-475. MR 1396146 (97e:05040)
  • 58. Max Neunhöffer, Felix Noeske, E.A. O`Brien, and Robert A. Wilson, Orbit invariants and an application to the Baby Monster, Journal of Algebra 341 (2011), no. 1, 297 - 305. MR 2824523
  • 59. S. P. Norton and R. A. Wilson, The maximal subgroups of $ F\sb 4(2)$ and its automorphism group, Comm. Algebra 17 (1989), no. 11, 2809-2824. MR 1025610 (90j:20064)
  • 60. D. S. Passman, Solvable $ 3/2$-transitive permutation groups, J. Algebra 7 (1967), 192-207. MR 0235018 (38:3330)
  • 61. -, Solvable half-transitive automorphism groups, J. Algebra 6 (1967), 285-304. MR 0215912 (35:6747)
  • 62. -, Exceptional $ 3/2$-transitive permutation groups, Pacific J. Math. 29 (1969), 669-713. MR 0244363 (39:5678)
  • 63. Jan Saxl, On finite linear spaces with almost simple flag-transitive automorphism groups, J. Combin. Theory Ser. A 100 (2002), no. 2, 322-348. MR 1940339 (2003k:20005)
  • 64. Gary M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2) 97 (1973), 27-56. MR 0340446 (49:5201)
  • 65. Ken-ichi Shinoda, The conjugacy classes of Chevalley groups of type $ (F\sb {4})$ over finite fields of characteristic $ 2$, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 21 (1974), 133-159. MR 0349863 (50:2356)
  • 66. F. G. Timmesfeld, Groups generated by root-involutions. I, J. Algebra 33 (1975), 75-134. MR 0372019 (51:8236)
  • 67. Harold N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89. MR 0197587 (33:5752)
  • 68. Helmut Wielandt, Finite permutation groups, Translated from the German by R. Bercov, Academic Press, New York, 1964. MR 0183775 (32:1252)
  • 69. P.-H. Zieschang, Theorems like Wielandt's, Arch. Math. (Basel) 58 (1992), no. 3, 209-213. MR 1148193 (93a:20007)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20B05, 20B15

Retrieve articles in all journals with MSC (2010): 20B05, 20B15


Additional Information

John Bamberg
Affiliation: Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009
Email: John.Bamberg@uwa.edu.au

Michael Giudici
Affiliation: Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009
Email: Michael.Giudici@uwa.edu.au

Martin W. Liebeck
Affiliation: Department of Mathematics, Imperial College, London SW7 2BZ, England
Email: m.liebeck@imperial.ac.uk

Cheryl E. Praeger
Affiliation: Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 – and – King Abdulaziz University, Jeddah, Saudi Arabia
Email: Cheryl.Praeger@uwa.edu.au

Jan Saxl
Affiliation: DPMMS, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, England
Email: saxl@dpmms.cam.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-2013-05758-3
Received by editor(s): March 29, 2011
Received by editor(s) in revised form: November 15, 2011, and November 25, 2011
Published electronically: March 12, 2013
Additional Notes: This paper forms part of an Australian Research Council Discovery Project. The second author was supported by an Australian Research Fellowship while the fourth author was supported by a Federation Fellowship of the Australian Research Council.
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society