On algebras which are locally in codimension-one

Authors:
S. M. Bhatwadekar, Amartya K. Dutta and Nobuharu Onoda

Journal:
Trans. Amer. Math. Soc. **365** (2013), 4497-4537

MSC (2010):
Primary 13F20; Secondary 14R25, 13E15

Published electronically:
January 9, 2013

MathSciNet review:
3066764

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Noetherian normal domain. Call an -algebra ``locally in codimension-one'' if is a polynomial ring in one variable over for every height-one prime ideal in . We shall describe a general structure for any faithfully flat -algebra which is locally in codimension-one and deduce results giving sufficient conditions for such an -algebra to be a locally polynomial algebra. We also give a recipe for constructing -algebras which are locally in codimension-one. When is a normal affine spot (i.e., a normal local domain obtained by a localisation of an affine domain), we give criteria for a faithfully flat -algebra , which is locally in codimension-one, to be Krull and a further condition for to be Noetherian. The results are used to construct intricate examples of faithfully flat -algebras locally in codimension-one which are Noetherian normal but not finitely generated.

**[1]**S. M. Bhatwadekar and Amartya K. Dutta,*On 𝐀¹-fibrations of subalgebras of polynomial algebras*, Compositio Math.**95**(1995), no. 3, 263–285. MR**1318088****[2]**S. M. Bhatwadekar and Amartya K. Dutta,*Kernel of locally nilpotent 𝑅-derivations of 𝑅[𝑋,𝑌]*, Trans. Amer. Math. Soc.**349**(1997), no. 8, 3303–3319. MR**1422595**, 10.1090/S0002-9947-97-01946-6**[3]**S. M. Bhatwadekar and Raja Sridharan,*Zero cycles and the Euler class groups of smooth real affine varieties*, Invent. Math.**136**(1999), no. 2, 287–322. MR**1688449**, 10.1007/s002220050311**[4]**Amartya Kumar Dutta,*On 𝐴¹-bundles of affine morphisms*, J. Math. Kyoto Univ.**35**(1995), no. 3, 377–385. MR**1359003****[5]**Amartya K. Dutta and Nobuharu Onoda,*Some results on codimension-one 𝐀¹-fibrations*, J. Algebra**313**(2007), no. 2, 905–921. MR**2329576**, 10.1016/j.jalgebra.2006.06.040**[6]**Amartya K. Dutta and Nobuharu Onoda,*On finite generation of 𝑅-subalgebras of 𝑅[𝑋]*, J. Algebra**320**(2008), no. 1, 57–80. MR**2417977**, 10.1016/j.jalgebra.2008.02.013**[7]**Paul Eakin and William Heinzer,*A cancellation problem for rings*, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Springer, Berlin, 1973, pp. 61–77. Lecture Notes in Math., Vol. 311. MR**0349664****[8]**Paul Eakin and James Silver,*Rings which are almost polynomial rings*, Trans. Amer. Math. Soc.**174**(1972), 425–449. MR**0309924**, 10.1090/S0002-9947-1972-0309924-4**[9]**Robert M. Fossum,*The divisor class group of a Krull domain*, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74. MR**0382254****[10]**William Heinzer,*On Krull overrings of a Noetherian domain*, Proc. Amer. Math. Soc.**22**(1969), 217–222. MR**0254022**, 10.1090/S0002-9939-1969-0254022-7**[11]**T. Y. Lam,*Lectures on modules and rings*, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR**1653294****[12]**Hideyuki Matsumura,*Commutative ring theory*, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR**879273****[13]**Masayoshi Nagata,*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR**0155856****[14]**Jun-ichi Nishimura,*Note on Krull domains*, J. Math. Kyoto Univ.**15**(1975), no. 2, 397–400. MR**0384783****[15]**Nobuharu Onoda,*Subrings of finitely generated rings over a pseudogeometric ring*, Japan. J. Math. (N.S.)**10**(1984), no. 1, 29–53. MR**884429****[16]**Wolmer V. Vasconcelos,*Flat modules over commutative noetherian rings*, Trans. Amer. Math. Soc.**152**(1970), 137–143. MR**0265341**, 10.1090/S0002-9947-1970-0265341-5**[17]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR**0120249**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
13F20,
14R25,
13E15

Retrieve articles in all journals with MSC (2010): 13F20, 14R25, 13E15

Additional Information

**S. M. Bhatwadekar**

Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

Address at time of publication:
Bhaskaracharya Pratishthana, 56/14, Erandwane, Damle Path, Off Law College Road, Pune, 411 004, India

Email:
smb@math.tifr.res.in, smbhatwadekar@gmail.com

**Amartya K. Dutta**

Affiliation:
Stat-Math Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108, India

Email:
amartya@isical.ac.in

**Nobuharu Onoda**

Affiliation:
Department of Mathematics, University of Fukui, Fukui 910-8507, Japan

Email:
onoda@u-fukui.ac.jp

DOI:
https://doi.org/10.1090/S0002-9947-2013-05619-X

Keywords:
Codimension-one,
faithfully flat,
finite generation,
retraction,
complete local,
Krull domain,
divisorial ideal,
symbolic power

Received by editor(s):
November 12, 2010

Received by editor(s) in revised form:
April 28, 2011

Published electronically:
January 9, 2013

Article copyright:
© Copyright 2013
American Mathematical Society