Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Lower bounds of growth of Hopf algebras

Authors: D.-G. Wang, J. J. Zhang and G. Zhuang
Journal: Trans. Amer. Math. Soc. 365 (2013), 4963-4986
MSC (2010): Primary 16P90, 16T05; Secondary 16T20
Published electronically: April 2, 2013
MathSciNet review: 3066776
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some lower bounds of GK-dimension of Hopf algebras are given.

References [Enhancements On Off] (What's this?)

  • [AA] N. Andruskiewitsch and I.E. Angiono, On Nichols algebras with generic braiding, pp. 47-64 in ``Modules and comodules'' (Porto, Portugal, 2006), edited by T. Brzeziński et al., Birkhäuser, Basel, 2008. MR 2742620 (2012b:16079)
  • [AS1] N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf Algebras, in: Recent developments in Hopf algebra Theory, MSRI Publications 43 (2002), 168, Cambridge Univ. Press. MR 1913436 (2003e:16043)
  • [AS2] -, A characterization of quantum groups, J. Reine Angew. Math. 577 (2004), 81-104. MR 2108213 (2005i:16083)
  • [Be] G.M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (2) (1978), 178-218. MR 506890 (81b:16001)
  • [Br1] K. A. Brown, Noetherian Hopf algebras. Turkish J. Math. 31 (2007), suppl., 7-23. MR 2368080 (2008j:16106)
  • [Br2] -, Representation theory of Noetherian Hopf algebras satisfying a polynomial identity, in Trends in the Representation Theory of Finite Dimensional Algebras (Seattle 1997), (E.L. Green and B. Huisgen-Zimmermann, eds.), Contemp. Math. 229 (1998), 49-79. MR 1676211 (99m:16056)
  • [BG1] K. A. Brown and K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras and irreducible modules of maximal dimension, J. Algebra 198 (1997), 240-265. MR 1482982 (99c:16036)
  • [BG2] -, Lectures on Algebraic Quantum Groups, Birkhäuser, 2002. MR 1898492 (2003f:16067)
  • [BZ] K.A. Brown and J.J. Zhang, Prime regular Hopf algebras of GK-dimension one, Proc. London Math. Soc. (3) 101 (2010) 260-302. MR 2661247 (2011j:16063)
  • [GZ1] K.R. Goodearl and J.J. Zhang, Homological properties of quantized coordinate rings of semisimple groups, Proc. Lond. Math. Soc. (3) 94 (2007), no. 3, 647-671. MR 2325315 (2008e:20077)
  • [GZ2] -, Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two, J. of Algebra 324 (2010), Special Issue in Honor of Susan Montgomery, 3131-3168. MR 2732991 (2012d:16098)
  • [Gr] M. Gromov, Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. No. 53 (1981), 53-73. MR 623534 (83b:53041)
  • [Kh] V.K. Kharchenko, A quantum analogue of the Poincaré-Birkhoff-Witt theorem (Russian. Russian summary), Algebra Log. 38 (1999), no. 4, 476-507, 509; translation in Algebra and Logic 38 (1999), no. 4, 259-276. MR 1763385 (2001f:16075)
  • [KL] G.R. Krause and T.H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, revised edition, Graduate Studies in Mathematics, 22, AMS, Providence, RI, 2000. MR 1721834 (2000j:16035)
  • [LWZ] D.-M. Lu, Q.-S. Wu and J.J. Zhang, Homological integral of Hopf algebras, Trans. Amer. Math. Soc. 359 (2007), no. 10, 4945-4975. MR 2320655 (2008f:16083)
  • [MR] J. C. McConnell and J. C . Robson, Noncommutative Noetherian Rings, Wiley, Chichester, 1987. MR 934572 (89j:16023)
  • [Mo] S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Regional Conference Series in Mathematics, 82, Providence, RI, 1993. MR 1243637 (94i:16019)
  • [SSW] L. W. Small, J.T. Stafford and R. B. Warfield, Jr., Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 407-414. MR 778674 (86g:16025)
  • [WuZ1] Q.-S. Wu and J.J. Zhang, Noetherian PI Hopf algebras are Gorenstein, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1043-1066. MR 1938745 (2003m:16056)
  • [WuZ2] -, Regularity of involutary PI Hopf algebras, J. Algebra 256 (2002), no. 2, 599-610. MR 1939124 (2004g:16042)
  • [Zhu] G. Zhuang, Existence of Hopf subalgebras of GK-dimension two, J. Pure Appl. Algebra 215 (2011), 2912-2922. MR 2811574

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16P90, 16T05, 16T20

Retrieve articles in all journals with MSC (2010): 16P90, 16T05, 16T20

Additional Information

D.-G. Wang
Affiliation: School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China

J. J. Zhang
Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195

G. Zhuang
Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195

Keywords: Hopf algebra, Gelfand-Kirillov dimension, skew primitive, pointed
Received by editor(s): September 13, 2010
Received by editor(s) in revised form: October 26, 2011, November 22, 2011, and January 17, 2012
Published electronically: April 2, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society