GLEASON PARTS AND COUNTABLY GENERATED CLOSED IDEALS IN H^∞

KEI JI IZUCHI AND YUKO IZUCHI

Abstract. It is proved that a countably generated closed ideal in H^∞ whose common zero set is contained in the union set of nontrivial Gleason parts of H^∞ is generated by two Carleson-Newman Blaschke products as a closed ideal.

1. Introduction

Let H^∞ be the Banach algebra of bounded analytic functions on the open unit disk \mathbb{D} with the supremum norm $\| \cdot \|_\infty$. We denote by $M(H^\infty)$ the maximal ideal space of H^∞, that is, $M(H^\infty)$ is the family of nonzero multiplicative linear functionals on H^∞ with the weak*-topology. For a subset E of $M(H^\infty)$, we denote by \overline{E} the closure of E in $M(H^\infty)$. We identify a function f in H^∞ with its Gelfand transform $\hat{f}(m) = m(f)$, $m \in M(H^\infty)$, so we think of f as a continuous function on $M(H^\infty)$. For a sequence $\{a_n\}_n$ in \mathbb{D} satisfying $\sum_{n=1}^\infty (1 - |a_n|) < \infty$, we have the Blaschke product $b(z) = \prod_{n=1}^\infty \frac{-\overline{a}_n z - a_n}{|a_n| (1 - \overline{a}_n z)}$, $z \in \mathbb{D}$, where if $a_n = 0$, we consider that $-\overline{a}_n/|a_n| = 1$. We call $\{a_n\}_n$ and $b(z)$ interpolating if for any bounded sequence of complex numbers $\{c_n\}_n$ there exists f in H^∞ such that $f(a_n) = c_n$ for every $n \geq 1$. In [2], Carleson gave a characterization of interpolating sequences. A Blaschke product B is said to be Carleson-Newman if $B = \prod_{j=1}^m b_j$ for finitely many interpolating Blaschke products b_1, b_2, \cdots, b_m. In this case, there are many ways to give such a factorization. If m is the minimal number of interpolating Blaschke products, B is said to be a Carleson-Newman Blaschke product of order m.

In the study of the structure of H^∞, Carleson-Newman Blaschke products have played an important role (see [3, 5, 8, 11]). For Blaschke products b_1 and b_2, we write $b_1 \lessdot b_2$ if b_1 is a subproduct of b_2.

For $x, y \in M(H^\infty)$, the pseudo-hyperbolic distance is defined by

$$\rho(x, y) = \sup \{ |f(x)| : f(y) = 0, f \in H^\infty, \|f\|_\infty \leq 1 \}.$$

A subset E of $M(H^\infty)$ is said to be ρ-separated if there is $\varepsilon > 0$ such that $\rho(x, y) \geq \varepsilon$ for every $x, y \in E$ with $x \neq y$. The set

$$P(x) = \{ y \in M(H^\infty) : \rho(y, x) < 1 \}$$

was partially supported by Grant-in-Aid for Scientific Research (No.21540166), Japan Society for the Promotion of Science.
is called the Gleason part of H^∞ containing $x \in M(H^\infty)$. If $P(x) \neq \{x\}$, $P(x)$ is said to be nontrivial. We denote by G the union set of all nontrivial Gleason parts in $M(H^\infty)$. In [2] (see also [3]), Hoffman studied the structure of Gleason parts of H^∞ extensively. For $x \in M(H^\infty)$, he proved that $x \in G$ if and only if there is an interpolating Blaschke product b satisfying $b(x) = 0$. He also proved that for an interpolating Blaschke product b, there exists $\varepsilon > 0$ such that $\{|b| < \varepsilon\} \subset G$, where

$$\{|b| < \varepsilon\} = \{x \in M(H^\infty) : |b(x)| < \varepsilon\}.$$

This fact shows that G is an open subset of $M(H^\infty)$, and for a Carleson-Newman Blaschke product B there is $\varepsilon > 0$ such that $\{|B| < \varepsilon\} \subset G$. Hoffman also showed that for a nontrivial Gleason part $P(x)$ of H^∞, there is a one-to-one, onto and continuous map $L_x : \mathbb{D} \to P(x)$ such that $L_x(0) = x$ and $f \circ L_x \in H^\infty$ for every $f \in H^\infty$. For $f \in H^\infty$, we write

$$Z(f) = \{x \in M(H^\infty) : f(x) = 0\}.$$

It is known that if b is an interpolating Blaschke product with zeros $\{z_n\}_n$ in \mathbb{D}, then $Z(b) = \{\overline{z_n}\}_n$, $Z(b)$ is ρ-separated and homeomorphic to the Stone-Čech compactification of the set of natural numbers, so $Z(b)$ is a totally disconnected set (see [4] [7]). Hence if B is a Carleson-Newman Blaschke product, then $Z(B)$ is also totally disconnected. Let $f \in H^\infty$. For $z \in \mathbb{D}$, we denote by $\text{ord}(f, z)$ the order of zero of f at z. For $x \in G \setminus \mathbb{D}$, we define $\text{ord}(f, x) = \text{ord}(f \circ L_x, 0)$. For $x \in M(H^\infty) \setminus G$, we put as usual $\text{ord}(f, x) = \infty$ if $f(x) = 0$ and $\text{ord}(f, x) = 0$ if $f(x) \neq 0$. Clearly, if b is an interpolating Blaschke product, then $\text{ord}(b, x) \leq 1$. If b is a Carleson-Newman Blaschke product of order m, then $\text{ord}(b, x) \leq m$ for every x.

Let I be a closed ideal in H^∞. We write

$$Z(I) = \bigcap_{f \in I} Z(f)$$

and

$$\text{ord}(I, x) = \inf_{f \in I} \text{ord}(f, x), \quad x \in M(H^\infty).$$

For each $1 \leq j \leq \infty$ and $f \in H^\infty$, we put

$$Z_j(f) = \{x \in M(H^\infty) : \text{ord}(f, x) \geq j\}$$

and

$$Z_j(I) = \{x \in M(H^\infty) : \text{ord}(I, x) \geq j\}.$$

It seems very difficult to study ideal theory in H^∞ generally (see [11]). In [4], Gorkin, Mortini and the first author proved the following two theorems for a closed ideal I satisfying $Z(I) \subset G$. In this case, by Theorem 2.3 in [5], I contains a Carleson-Newman Blaschke product, so $\sup_{x \in Z(I)} \text{ord}(I, x) < \infty$ and $Z(I)$ is totally disconnected (see also [14]).

Theorem A. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$. Then I coincides with the set of all f in H^∞ satisfying $\text{ord}(f, x) \geq \text{ord}(I, x)$ for every $x \in Z(I)$.

This shows that if I_1, I_2 are closed ideals in H^∞ such that $Z(I_i) \subset G$ for $i = 1, 2$, $Z(I_1) = Z(I_2)$ and $\text{ord}(I_1, x) = \text{ord}(I_2, x)$ for every $x \in Z(I_1)$, then we have $I_1 = I_2$.
Theorem B. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \text{ord}(I,x)$. For each $1 \leq j \leq m$, let U_j be an open subset of $M(H^\infty)$ satisfying $Z_j(I) \subset U_j$. Then I is algebraically generated by Carleson-Newman Blaschke products B of order m in I such that $Z_j(B) \subset U_j$ for $1 \leq j \leq m$.

The above two theorems give us a great deal of information about closed ideals I satisfying $Z(I) \subset G$. In [12, 13], the authors studied closed ideals I satisfying $Z(I) \subset G$ extensively.

For a sequence $\{f_n\}_n$ in H^∞, we denote by $I[f_n : n \geq 1]$ the closed ideal in H^∞ generated by functions $f_n, n = 1, 2, \cdots$; that is,

$$I[f_n : n \geq 1] = \bigcup_{n=1}^\infty \sum_{j=1}^n f_j H^\infty,$$

where the bar indicates the closure in H^∞. The closed ideal $I[f_n : n \geq 1]$ is called a countably generated closed ideal in H^∞. In this paper, we study the structure of countably generated closed ideals I satisfying $Z(I) \subset G$. For a closed subset E of $M(H^\infty)$, let $I(E) = \{f \in H^\infty : f(x) = 0, x \in E\}$. Then $I(E)$ is a closed ideal in H^∞ and $E \subset Z(I(E))$. For closed ideals I_1, I_2, \cdots, I_m in H^∞, let $\bigotimes_{i=1}^m I_i$ and $\bigotimes_{i=1}^m I_i$ be the tensor product and the closed tensor product of I_1, I_2, \cdots, I_m, respectively. That is, $\bigotimes_{i=1}^m I_i$ is an ideal generated by functions $\prod_{i=1}^m f_i$, where $f_i \in I_i, 1 \leq i \leq m$, and $\bigotimes_{i=1}^m I_i = \bigotimes_{i=1}^m I_i$. In Section 2, we shall prove the following theorem.

Theorem 1.1. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \text{ord}(I,x)$. Then the following conditions are equivalent.

(i) I is a countably generated closed ideal.

(ii) There are compact ρ-separated G_δ-subsets E_1, E_2, \cdots, E_m of G such that $I = \bigotimes_{j=1}^m I(E_j)$.

(iii) There is a Carleson-Newman Blaschke product B of order m in I such that $\text{ord}(B, x) = \text{ord}(I, x)$ for every $x \in Z(I)$, and $Z(I)$ is a G_δ-set.

(iv) There are two Carleson-Newman Blaschke products B_1, B_2 in I such that $I = I[B_1, B_2]$.

For a compact ρ-separated G_δ-subset E of G, there is an interpolating Blaschke product b satisfying $E \subset Z(b)$, and $I(E)$ is a countably generated closed ideal. We shall show in Example 2.14 that there exist compact ρ-separated G_δ-subsets E_1 and E_2 of G such that $I(E_1) \cap I(E_2)$ is not countably generated. If I is a countably generated closed ideal in H^∞, then by Theorem 1.1, $Z_j(I)$ is a G_δ-set for every $1 \leq j \leq \infty$. But if I is the closed ideal given in Example 2.14, then $Z_2(I)$ is not a G_δ-set.

2. Countably generated closed ideals

To prove Theorem 1.1, we need some lemmas. For a sequence $\{f_n\}_n$ in H^∞ and $1 \leq j \leq \infty$, it is not difficult to show that

$$Z_j(I[f_n : n \geq 1]) = \bigcap_{n=1}^\infty Z_j(f_n)$$

and

$$\text{ord}(I[f_n : n \geq 1], x) = \inf_{n \geq 1} \text{ord}(f_n, x), \quad x \in Z(I[f_n : n \geq 1]).$$
Lemma 2.1. Let B be a Carleson-Newman Blaschke product. Then $Z_j(B)$ is a closed G_δ-set for every $1 \leq j < \infty$.

Proof. Let $B = \prod_{i=1}^{k} b_i$, where b_i is an interpolating Blaschke product for every $1 \leq i \leq k$. Since $\text{ord}(b_i, x) \leq 1$ for $x \in M(H^\infty)$, we have that $Z_j(B) = \emptyset$ for $j > k$. Suppose that $1 \leq j \leq k$. Put $E_i = Z(b_i)$. Then E_i is a closed G_δ-set. We have

$$Z_j(B) = \bigcup \left\{ \bigcap_{l=1}^{j} E_{i_l} : 1 \leq i_1 < i_2 < \cdots < i_j \leq k \right\}.$$

Therefore $Z_j(B)$ is a closed G_δ-set. \hfill \square

Lemma 2.2. If $f \in H^\infty$ and $f \neq 0$, then $Z_j(f)$ is a closed G_δ-set for every $1 \leq j \leq \infty$.

Proof. Let $f = B h$, where B is a Blaschke product and $h \in H^\infty$ satisfying $|h| > 0$ on \mathbb{D}. Then $Z_\infty(h) = Z(h)$ and $Z_\infty(h)$ is a closed G_δ-set. By Corollary 3.1 in [9], $Z_\infty(B)$ is a closed G_δ-set. Then $Z_\infty(f) = Z_\infty(B) \cup Z_\infty(h)$ is a closed G_δ-set. We have

$$Z(f) \setminus Z_\infty(f) = (Z(B) \cup Z(h)) \setminus Z_\infty(f)$$

$$= (Z(B) \cup Z_\infty(h)) \setminus Z_\infty(f) = Z(B) \setminus Z_\infty(f).$$

By Lemma 4.6 in [9], $Z(B) \setminus Z_\infty(f)$ is a totally disconnected set. Hence there is a sequence of open and closed subsets $\{E_n\}_n$ of $Z(B)$ such that $Z(B) \setminus Z_\infty(f) = \bigcup_{n=1}^{\infty} E_n$ and $E_n \cap E_k = \emptyset$ for $n \neq k$. Let b_n be the subproduct of B with zeros $Z(B) \cap E_n \cap \mathbb{D}$ counting multiplicities. Since $Z(B) \cap \mathbb{D} \subset Z(B) \setminus Z_\infty(f)$, we have $B = \prod_{n=1}^{\infty} b_n$ and $Z(b_n) = E_n$ for every $n \geq 1$. We note that b_n is a Carleson-Newman Blaschke product. For each $1 \leq j < \infty$, we have

$$Z_j(f) = Z_\infty(f) \cup \bigcup_{n=1}^{\infty} Z_j(b_n).$$

By Lemma 2.1 $Z_j(b_n)$ is a closed G_δ-set; so is $Z_j(f)$. \hfill \square

Lemma 2.3. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \text{ord}(I, x)$. Then I is a countably generated closed ideal if and only if $Z_j(I)$ is a closed G_δ-set for every $1 \leq j \leq m$. In this case, I is generated by countably many Carleson-Newman Blaschke products.

Proof. Suppose that $I = I[f_n : n \geq 1]$ for a sequence $\{f_n\}_n$ in H^∞. For each $1 \leq j \leq m$, we have $Z_j(I) = \bigcap_{n=1}^{\infty} Z_j(f_n)$. By Lemma 2.2 $Z_j(I)$ is a closed G_δ-set.

Suppose that $Z_j(I)$ is a closed G_δ-set for every $1 \leq j \leq m$. For each $1 \leq j \leq m$, let $\{U_{j,n}\}_n$ be a sequence of open subsets of G such that $Z_j(I) = \bigcap_{n=1}^{\infty} U_{j,n}$. By Theorem B, there is a sequence of Carleson-Newman Blaschke products $\{\varphi_n\}_n$ in I such that $Z_j(\varphi_n) \subset U_{j,n}$ for every $1 \leq j \leq m$ and $n \geq 1$. Let $J = I[\varphi_n : n \geq 1]$. Then $J \subset I$ and $Z(I) \subset Z(J)$. We have $Z(J) \subset Z(\varphi_n) \subset U_{1,n}$ for every $n \geq 1$. Then $Z(J) \subset \bigcap_{n=1}^{\infty} U_{1,n} = Z_1(I) = Z(I)$. Hence $Z(J) = Z(I)$.

Let $x \in Z(I)$ and $\ell = \text{ord}(I, x)$. Since $\varphi_n \in I$, $\ell \leq \text{ord}(\varphi_n, x)$ for every $n \geq 1$. Since $x \notin Z_{\ell+1}(I)$, there is a positive integer k such that $x \notin U_{\ell+1,k}$. Hence
We get
\[\ell = \text{ord}(J, x) \leq \text{ord}(I, x) \leq \text{ord}(\varphi_k, x) = \ell. \]
Thus we get \(\text{ord}(J, x) = \text{ord}(I, x) \) for every \(x \in Z(I) \). By Theorem A, we have \(J = I \).

The following lemma follows from Theorem 3.1 in [10].

Lemma 2.4. Let \(E \) be a compact \(\rho \)-separated subset of \(G \) and \(U \) be an open subset of \(M(H^\infty) \) satisfying \(E \subset U \). Then there exists an interpolating Blaschke product \(b \) such that \(E \subset Z(b) \subset U \).

Lemma 2.5. Let \(E \) be a compact \(\rho \)-separated \(G_\delta \)-subset of \(G \). Then \(I(E) \) is a countably generated closed ideal in \(H^\infty \), \(E \) is a totally disconnected set, \(Z(I(E)) = E \) and \(\text{ord}(I(E), x) = 1 \) for every \(x \in E \).

Proof. By Lemma 2.4, there is an interpolating Blaschke product \(b \) such that \(E \subset Z(b) \subset G \). Hence \(\text{ord}(I(E), x) = 1 \) for every \(x \in E \). Since \(Z(b) \) is a totally disconnected set, so is \(E \). Let \(\{U_n\}_n \) be a sequence of open subsets of \(G \) satisfying \(E = \bigcap_{n=1}^{\infty} U_n \) and \(Z(b) \cap U_n \) be an open and closed subset of \(Z(b) \) for every \(n \geq 1 \). Let \(b_n \) be the subproduct of \(b \) with zeros \(Z(b) \cap U_n \cap \mathbb{D} \). Then \(E \subset Z(b_n) \subset U_n \). Let \(J = I[b_n : n \geq 1] \). Then we have \(J \subset I(E) \) and
\[E \subset Z(I(E)) \subset Z(J) \subset \bigcap_{n=1}^{\infty} U_n = E. \]
Hence \(Z(I(E)) = Z(J) = E \). We have \(\text{ord}(J, x) = 1 \) for every \(x \in E \). By Theorem A, we get \(J = I(E) \).

The following lemma follows from the definition of a closed tensor product.

Lemma 2.6. Let \(I_1, I_2, \cdots, I_m \) be countably generated closed ideals in \(H^\infty \). Then
\(\bigotimes_{j=1}^{m} I_j \) is a countably generated closed ideal, \(Z(\bigotimes_{j=1}^{m} I_j) = \bigcup_{j=1}^{m} Z(I_j) \) and \(\text{ord}(\bigotimes_{j=1}^{m} I_j, x) = \sum_{j=1}^{m} \text{ord}(I_j, x) \) for every \(x \in Z(\bigotimes_{j=1}^{m} I_j) \).

For closed ideals \(I_1, I_2, \cdots, I_m \) in \(H^\infty \) satisfying \(Z(I_j) \subset G \) for every \(1 \leq j \leq m \), in [13] Corollary 9.15 [the authors] proved that \(\bigotimes_{j=1}^{m} I_j = \bigotimes_{j=1}^{m} I_j \).

Lemma 2.7. Let \(I \) be a closed ideal in \(H^\infty \) satisfying \(Z(I) \subset G \) and \(x \in Z(I) \). Let \(B \) be a Carleson-Newman Blaschke product in \(I \) and \(W \) be an open subset of \(M(H^\infty) \) satisfying \(x \in U \subset G \cap W \) and \(Z(I) \cap U \) is an open and closed subset of \(Z(I) \), and there is a Carleson-Newman Blaschke product \(\varphi \) of order \(\text{ord}(I, x) \) such that \(Z(\varphi) \subset U \), \(\varphi \prec B \) and \(\text{ord}(I, y) \leq \text{ord}(\varphi, y) \leq \text{ord}(I, x) \) for every \(y \in Z(I) \cap U \).

Proof. Since \(Z(I) \) is a totally disconnected set (see [4] Theorem 2.2), we may take a sufficiently small open subset \(U \) of \(M(H^\infty) \) such that \(x \in U \subset G \cap W \) and \(Z(I) \cap U \) is an open and closed subset of \(Z(I) \). Since \(\text{ord}(I, y) \) is upper semicontinuous in \(y \in Z(I) \) (see [4] Lemma 1.2), we may assume that \(\text{ord}(I, y) \leq \text{ord}(I, x) \) for every \(y \in Z(I) \cap U \). Let
\[I_U = \{ f \in H^\infty : \text{ord}(f, y) \geq \text{ord}(I, y), y \in Z(I) \cap U \}. \]
Then by Theorem A, \(I_U \) is a closed ideal in \(H^\infty \), \(I \subset I_U \), \(Z(I_U) = Z(I) \cap U \) and \(\text{ord}(I_U, y) = \text{ord}(I, y) \) for every \(y \in Z(I) \cap U \). By [13] Proposition 8.9, there is a
Carleson-Newman Blaschke product \(\varphi \) of order \(\text{ord}(I, x) \) in \(I_U \) such that \(Z(\varphi) \subset U \), \(\varphi < B \) and \(\text{ord}(\varphi, x) = \text{ord}(I_U, x) \). For each \(y \in Z(I) \cap U \), we have

\[
\text{ord}(I, y) = \text{ord}(I_U, y) \leq \text{ord}(\varphi, y) \leq \text{ord}(I, x).
\]

\[\square\]

Lemma 2.8. Let \(I \) be a closed ideal in \(H^\infty \) satisfying \(Z(I) \subset G \) and \(m = \sup_{x \in Z(I)} \text{ord}(I, x) \). Let \(W_1, W_2, \ldots, W_m \) be open subsets of \(M(H^\infty) \) such that \(Z_j(I) \subset W_j \) for every \(1 \leq j \leq m \) and \(W_m \subset W_{m-1} \subset \cdots \subset W_1 \). Let \(B \) be a Carleson-Newman Blaschke product in \(I \). Then there is a Carleson-Newman Blaschke product \(b \) such that \(b \in I \), \(b < B \) and \(\text{ord}(b, y) \leq j \) for every \(y \in Z(I) \cap (W_j \setminus W_{j+1}) \) and \(1 \leq j \leq m \), where \(W_{m+1} = \emptyset \).

Proof. For each \(x \in Z(I) \), since \(Z(I) \subset \bigcup_{j=1}^m (W_j \setminus W_{j+1}) \) there exists \(1 \leq j \leq m \) such that \(x \in W_j \setminus W_{j+1} \). Then \(\text{ord}(I, x) \leq j \). By Lemma 2.7, there is an open subset \(U_x \) of \(M(H^\infty) \) satisfying that \(x \in U_x \subset G \cap W_j \) and \(Z(I) \cap U_x \) is an open and closed subset of \(Z(I) \), and there is a Carleson-Newman Blaschke product \(\varphi_x \) of order \(\text{ord}(I, x) \) such that \(Z(\varphi_x) \subset U_x \), \(\varphi_x < B \) and \(\text{ord}(I, y) \leq \text{ord}(\varphi_x, y) \leq \text{ord}(I, x) \) for every \(y \in Z(I) \cap U_x \).

Since \(Z(I) \) is a compact set, there is a finite set \(\{x_1, x_2, \ldots, x_s\} \) in \(Z(I) \) such that \(Z(I) \subset \bigcup_{i=1}^s U_{x_i} \). Let

\[
E_1 = Z(I) \cap U_{x_1}, \quad E_2 = (Z(I) \cap U_{x_2}) \setminus (Z(I) \cap U_{x_1}),
\]

\[
\ldots, \quad E_s = (Z(I) \cap U_{x_s}) \setminus \bigcup_{i=1}^{s-1} (Z(I) \cap U_{x_i}).
\]

Then \(E_i \) is an open and closed subset of \(Z(I) \), \(E_i \cap E_j = \emptyset \) for \(i \neq j \) and \(\bigcup_{i=1}^s E_i = Z(I) \). It may be that \(x_i \notin E_i \) for some \(1 \leq i \leq s \). We may take open subsets \(V_1, V_2, \ldots, V_s \) of \(M(H^\infty) \) satisfying that \(E_i \subset V_i \subset U_{x_i} \) and \(\overline{V_i} \cap \overline{V_j} = \emptyset \) for \(i \neq j \).

Let \(\psi_i \) be the Blaschke subproduct of \(\varphi_{x_i} \) with zeros \(Z(\varphi_{x_i}) \cap V_i \cap \mathbb{D} \) counting multiplicities. Then \(Z(\psi_i) \cap Z(\psi_j) = \emptyset \) for \(i \neq j \) and \(\text{ord}(\psi_i, y) = \text{ord}(\varphi_{x_i}, y) \) for every \(y \in E_i \) and \(1 \leq i \leq s \). Let \(b = \prod_{i=1}^s \psi_i \). Then \(b < B \).

Let \(y \in Z(I) \). Then there is the unique \(1 \leq j \leq m \) such that \(y \in W_j \setminus W_{j+1} \). Also there is the unique \(1 \leq i \leq s \) such that \(y \in E_i \). So we have

\[
\text{ord}(b, y) = \text{ord}(\psi_i, y) = \text{ord}(\varphi_{x_i}, y) \leq \text{ord}(I, x_i).
\]

Here we have two cases.

Case 1. Suppose that \(x_i \in W_j \setminus W_{j+1} \). Then we have

\[
\text{ord}(I, y) \leq \text{ord}(\varphi_{x_i}, y) \leq \text{ord}(I, x_i) \leq j.
\]

Hence \(\text{ord}(I, y) \leq \text{ord}(b, y) \leq j \).

Case 2. Suppose that \(x_i \in W_k \setminus W_{k+1} \) for some \(k \neq j \). If \(k < j \), then \(\text{ord}(I, x_i) \leq k < j \). Hence

\[
\text{ord}(I, y) \leq \text{ord}(\varphi_{x_i}, y) = \text{ord}(b, y) < j.
\]

If \(k > j \), then \(y \in U_{x_i} \subset W_k \). Since \(y \notin W_{j+1} \) and \(W_k \subset W_{j+1} \), we have \(y \notin W_k \). This is a contradiction.

By the above two cases, we have \(\text{ord}(I, y) \leq \text{ord}(b, y) \leq j \) for every \(y \in Z(I) \cap (W_j \setminus W_{j+1}) \). By Theorem A, we have \(b \in I \). Thus we get the assertion. \[\square\]
Lemma 2.9. Let I be a countably generated closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \ord(I, x)$. Let B be a Carleson-Newman Blaschke product in I. Then there is a sequence of Carleson-Newman Blaschke products $\{b_n\}_n$ such that $b_1 < B, b_{n+1} < b_n, b_n \in I$ for every $n \geq 1$ and for each $x \in Z(I)$ there is a positive integer n satisfying $\ord(I, x) = \ord(b_n, x)$.

Proof. By Lemma 2.3 $Z_j(I)$ is a closed G_δ-set for every $1 \leq j \leq m$. For each $1 \leq j \leq m$, take a sequence of open subsets $\{W_{j,n}\}_n$ of $M(H^\infty)$ such that $\bigcap_{n=1}^\infty W_{j,n} = Z_j(I)$ and $W_{j,n+1} \subset W_{j,n}$ for every $n \geq 1$. Further we may assume that $W_{j+1,n} \subset W_{j,n}$ for every $1 \leq j \leq m$ and $n \geq 1$, where $W_{m+1,n} = \emptyset$ for every $n \geq 1$. By Lemma 2.8, there is a Carleson-Newman Blaschke product b_1 such that $b_1 < B$ and $\ord(b_1, y) \leq j$ for every $y \in Z(I) \cap (W_{j,1} \setminus W_{j+1,1})$ and $1 \leq j \leq m$. By Lemma 2.8 again, there is a Carleson-Newman Blaschke product b_2 such that $b_2 < b_1$ and $\ord(b_2, y) \leq j$ for every $y \in Z(I) \cap (W_{j,2} \setminus W_{j+1,2})$ and $1 \leq j \leq m$. Inductively we may get a sequence of Carleson-Newman Blaschke products $\{b_n\}_n$ such that $b_n \in I, b_{n+1} < b_n$ and $\ord(b_n, y) \leq j$ for every $y \in Z(I) \cap (W_{j,n} \setminus W_{j+1,n})$ and $1 \leq j \leq m$.

Let $x \in Z(I)$ and $t = \ord(I, x)$. We consider two cases separately.

Case 1. Suppose that $t < m$. Then $x \notin Z_{t+1}(I)$ and there is a positive integer k such that $x \in Z(I) \cap (W_{t,k} \setminus W_{t+1,k})$. Hence $\ord(b_k, x) \leq t$. Since $b_k \in I$, we have $t = \ord(I, x) \leq \ord(b_k, x) \leq t$. Thus we get $\ord(I, x) = \ord(b_k, x)$.

Case 2. Suppose that $t = m$, that is, $\ord(I, x) = m$. Then $x \in Z(I) \cap (W_{m,n} \setminus W_{m+1,n})$ for every $n \geq 1$. Hence $\ord(b_n, x) = m$. Since $b_n \in I$, we have $m \leq \ord(b_n, x)$. Thus we get $\ord(I, x) = \ord(b_n, x)$ for every $n \geq 1$.

The following is due to Hoffman [7].

Lemma 2.10. For any interpolating Blaschke product b with zeros $\{z_n\}_n$ in \mathbb{D}, there exists a positive number $\lambda(b)$ such that a sequence $\{w_n\}_n$ in \mathbb{D} satisfying $\rho(w_n, z_n) < \lambda(b)$ is an interpolating sequence.

Lemma 2.11. Let I be a closed ideal in H^∞ and $Z(I) \subset G$. Let B be a Carleson-Newman Blaschke product in I. Then there is a Carleson-Newman Blaschke product b in I satisfying the following conditions.

(i) $\ord(b, x) = \ord(B, x)$ for every $x \in Z(I) \setminus \mathbb{D}$.

(ii) $\ord(b, z) = \ord(I, z)$ for every $z \in Z(I) \cap \mathbb{D}$.

(iii) $\ord(b, z) = 1$ for every $z \in (Z(b) \setminus Z(I)) \cap \mathbb{D}$.

Proof. Let $\varphi_1, \varphi_2, \ldots, \varphi_m$ be interpolating Blaschke products satisfying $B = \prod_{j=1}^m \varphi_j$. Let $\lambda = \min_{1 \leq j \leq m} \lambda(\varphi_j)$. Then $\lambda > 0$. Let $\{z_n\}_n = Z(B) \cap \mathbb{D}$ and $k_n = \ord(B, z_n)$. Then $\sup_{n \geq 1} k_n < \infty$. Let $\{\varepsilon_n\}_n$ be a sequence of numbers with $0 < \varepsilon_n < \lambda$ such that $\varepsilon_n \to 0$ as $n \to \infty$. We shall move the zeros of B a little. Let n be a positive integer. If $z_n \notin Z(I)$, then take $\{w_{n,1}, w_{n,2}, \ldots, w_{n,k_n}\}$ in \mathbb{D} such that $\rho(w_{n,i}, z_n) < \varepsilon_n, w_{n,i} \neq w_{n,j}$ for $i \neq j$ and $\{w_{n,1}, w_{n,2}, \ldots, w_{n,k_n}\} \cap \{z_n\}_n = \emptyset$.

If $z_n \in Z(I)$, put $\ell_n = \ord(I, z_n)$. Then take $\{w_{n,1}, w_{n,2}, \ldots, w_{n,k_n}\}$ in \mathbb{D} as the following: $\rho(w_{n,i}, z_n) < \varepsilon_n$ for every $1 \leq i \leq \ell_n, w_{n,1} = w_{n,2} = \cdots = w_{n,\ell_n} = z_n, w_{n,i} \neq w_{n,j}$ for every $\ell_n \leq i < j \leq k_n$ and $\{w_{n,i} : \ell_n + 1 \leq i \leq k_n\} \cap \{z_n\}_n = \emptyset$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Further, we may assume that
\[\{w_{n,1}, w_{n,2}, \ldots, w_{n,k_n}\} \cap \{w_{j,1}, w_{j,2}, \ldots, w_{j,k_j}\} = \emptyset \]
for every \(n \neq j \) and
\[\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} (1 - |w_{n,i}|) < \infty. \]

Let \(b \) be the Blaschke product with zeros \(\{w_{n,i}\}_{n,i} \) counting multiplicities. By Lemma 2.10, \(b \) is a Carleson-Newman Blaschke product. We have \(\text{ord}(b, x) = \text{ord}(B, x) \) for every \(x \in Z(I) \setminus \mathbb{D} \). It is easy to see that \(b \) satisfies (ii) and (iii). Since \(\text{ord}(I, x) \leq \text{ord}(b, x) \) for every \(x \in Z(I) \), by Theorem A we have \(b \in I \). \(\square \)

Lemma 2.12. Let \(B \) be a Carleson-Newman Blaschke product and \(\{z_n\}_n \) be an interpolating sequence in \(\mathbb{D} \). If \(0 < \varepsilon < 1 \), then
\[\inf_n \sup \{|B(z)| : z \in \mathbb{D}, \rho(z, z_n) < \varepsilon\} > 0. \]

Proof. To prove the assertion, suppose not. Then there exists a subsequence \(\{n_j\}_j \) such that
\[\lim_{j \to \infty} \sup \{|B(z)| : z \in \mathbb{D}, \rho(z, z_{n_j}) < \varepsilon\} = 0. \]

Let \(x \) be a cluster point of \(\{z_{n_j}\}_j \) in \(M(H^\infty) \). By Hoffman’s work [7], it is easy to see that \(B \equiv 0 \) on \(P(x) \), the Gleason part of \(x \). By our assumption, \(B \not\equiv 0 \) on \(P(x) \), and this is a contradiction. \(\square \)

Lemma 2.13. Let \(B \) be a Carleson-Newman Blaschke product and \(b \) be an interpolating Blaschke product. Let \(E \) be a closed \(G_\delta \)-subset of \(Z(b) \). Then there is an interpolating Blaschke product \(\varphi \) such that \(E \subset Z(\varphi) \) and \(Z(B) \cap E = Z(B) \cap Z(\varphi) \).

Proof. If \(Z(B) \cap E = Z(B) \cap Z(b) \), then put \(\varphi = b \). Then we get the assertion. So we assume that \(Z(B) \cap E \subsetneq Z(B) \cap Z(b) \). By the assumptions, there is a sequence of closed subsets \(\{K_n\}_n \) of \(Z(b) \) such that
\[(Z(B) \cap Z(b)) \setminus E = \bigcup_{n=1}^{\infty} K_n \]
and \(K_n \cap K_k = \emptyset \) for \(n \neq k \). We note that
\[\bigcup_{n=1}^{\infty} K_n \setminus \bigcup_{n=1}^{\infty} K_n \subset E. \]

Take a sequence of open subsets \(\{U_n\}_n \) of \(M(H^\infty) \) such that \(K_n \subset U_n \), \(\overline{U_n} \cap \overline{U_k} = \emptyset \) for \(n \neq k \), \(E \cap \overline{U_n} = \emptyset \) and \(Z(b) \cap U_n \) is an open and closed subset of \(Z(b) \) for every \(n \geq 1 \). Let \(b_{n,\ell} \) be the subproduct of \(b \) with zeros \(\{z_{n,\ell}\}_\ell : Z(b) \cap U_n \cap \mathbb{D} \). Then \(K_n \subset Z(b_{n,\ell}) \), \(E \cap Z(b_{n,\ell}) = \emptyset \) for every \(n \geq 1 \) and \(b = \prod_{n=0}^{\infty} b_n \) for some interpolating Blaschke product \(b_0 \). We note that
\[(Z(B) \cap Z(b)) \setminus \bigcup_{n=1}^{\infty} Z(b_{n,\ell}) \subset E. \]

Let \(\{\varepsilon_n\}_n \) be a sequence of numbers such that \(0 < \varepsilon_n < \lambda(b) \) and \(\varepsilon_n \to 0 \) as \(n \to \infty \). By Lemma 2.12 there is a sequence of positive numbers \(\{\delta_n\}_n \) such that
\[\sup \{|B(z)| : z \in \mathbb{D}, \rho(z, z_{n,\ell}) < \varepsilon_n\} > \delta_n \]
for every $\ell \geq 1$. For each $\ell \geq 1$, take $w_{n,\ell} \in \mathbb{D}$ satisfying $\rho(w_{n,\ell}, z_{n,\ell}) < \varepsilon_n$ and $|B(w_{n,\ell})| > \delta_n$. By Lemma 2.10, $\{w_{n,\ell}\}_\ell$ is an interpolating sequence for every $n \geq 1$. For each $n \geq 1$, let φ_n be the interpolating Blaschke product with zeros $\{w_{n,\ell}\}_\ell$. Then $Z(B) \cap Z(\varphi_n) = \emptyset$ and $E \cap Z(\varphi_n) = \emptyset$ for every $n \geq 1$. Since

$$\sup_{\ell \geq 1} \rho(w_{n,\ell}, z_{n,\ell}) \leq \varepsilon_n \to 0 \quad (n \to \infty),$$

we have

$$Z\left(\prod_{n=1}^{\infty} b_n \right) \setminus \bigcup_{n=1}^{\infty} Z(b_n) = Z\left(\prod_{n=1}^{\infty} \varphi_n \right) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n).$$

Put $\varphi = b_0 \prod_{n=1}^{\infty} \varphi_n$. Since

$$\sup_{n,\ell \geq 1} \rho(w_{n,\ell}, z_{n,\ell}) < \lambda(b),$$

by Lemma 2.10, φ is an interpolating Blaschke product. Since $E \subset Z(b)$ and $E \cap Z(b_n) = \emptyset$ for every $n \geq 1$, we have

$$E \subset Z(b) \setminus \bigcup_{n=1}^{\infty} Z(b_n)$$

$$= \left(Z(b_0) \cup Z\left(\prod_{n=1}^{\infty} b_n \right) \right) \setminus \bigcup_{n=1}^{\infty} Z(b_n)$$

$$= \left(Z(b_0) \setminus \bigcup_{n=1}^{\infty} Z(b_n) \right) \cup \left(Z\left(\prod_{n=1}^{\infty} \varphi_n \right) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n) \right)$$

$$= Z(\varphi) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n).$$

Hence $E \subset Z(\varphi)$. Since $Z(B) \cap Z(\varphi_n) = \emptyset$ for every $n \geq 1$, we have

$$Z(B) \cap E \subset Z(B) \cap Z(\varphi) \subset Z(B) \cap \left(Z(\varphi) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n) \right)$$

$$= (Z(B) \cap Z(b)) \setminus \bigcup_{n=1}^{\infty} Z(b_n) \subset Z(B) \cap E.$$

Hence we get $Z(B) \cap E = Z(B) \cap Z(\varphi)$. \hfill \square

Proof of Theorem 1.1 (i) \Rightarrow (ii) By Theorem B, there is a Carleson-Newman Blaschke product b_1 of order m in I. By Lemma 2.11, we may assume that $\text{ord}(b_1, z) = \text{ord}(I, z)$ for every $z \in Z(I) \cap \mathbb{D}$ and $\text{ord}(b_1, z) = 1$ for every $z \in (Z(b_1) \setminus Z(I)) \cap \mathbb{D}$. By Lemma 2.9, there is a sequence of Carleson-Newman Blaschke products $\{b_n\}_n$ such that $b_n \in I$, $b_{n+1} < b_n$ for every $n \geq 1$, and for each $x \in Z(I)$ there is a positive integer n satisfying $\text{ord}(b_n, x) = \text{ord}(I, x)$.

Since the order of b_1 is equal to m, there are interpolating Blaschke products $\varphi_{1,1}, \varphi_{2,1}, \ldots, \varphi_{m,1}$ such that $b_1 = \prod_{j=1}^{m} \varphi_{j,1}$. Since $b_n \in I$ and $b_{n+1} < b_n$ for every $n \geq 1$, we have $\text{ord}(b_n, z) = \text{ord}(I, z)$ for $z \in Z(I) \cap \mathbb{D}$ and $\text{ord}(b_n, z) = 1$ for $z \in (Z(b_n) \setminus Z(I)) \cap \mathbb{D}$. Then there are the unique interpolating Blaschke products $\varphi_{1,n}, \varphi_{2,n}, \ldots, \varphi_{m,n}$ such that $b_n = \prod_{j=1}^{m} \varphi_{j,n}$ and $\varphi_{j,n+1} < \varphi_{j,n}$ for every $1 \leq j \leq m$. We note that if $z \in Z(I) \cap \mathbb{D}$ and $\varphi_{j,1}(z) = 0$, then $\varphi_{j,n}(z) = 0$ for every $n \geq 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For each \(1 \leq j \leq m\), let
\[
E_j = Z(I) \cap \bigcap_{n=1}^{\infty} Z(\varphi_{j,n}).
\]
By Lemma 2.3, \(E_j\) is a compact \(G_\delta\)-set. Since \(\varphi_{j,n}\) is an interpolating Blaschke product, \(E_j\) is a \(\rho\)-separated set. Since \(b_n \in I\),
\[
Z(I) \subset Z(b_n) = \bigcup_{j=1}^{m} Z(\varphi_{j,n}),
\]
so
\[
Z(I) = \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})).
\]
We have
\[
\bigcup_{j=1}^{m} E_j \subset \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})) = Z(I).
\]
Suppose that \(\bigcup_{j=1}^{m} E_j \subsetneq Z(I)\) and \(y \in Z(I) \setminus \bigcup_{j=1}^{m} E_j\). For each \(1 \leq j \leq m\), since \(y \notin E_j\) there is a positive integer \(n_j\) such that \(y \notin Z(I) \cap Z(\varphi_{j,n_j})\). Let \(n = \min_{1 \leq j \leq m} n_j\). Then
\[
Z(I) \cap Z(\varphi_{j,n}) \subset Z(I) \cap Z(\varphi_{j,n_j}).
\]
Hence
\[
y \notin \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})) = Z(I).
\]
But this is a contradiction. Thus we get
\[
Z(I) = \bigcup_{j=1}^{m} E_j.
\]
Let \(x \in Z(I)\). Then there is a positive integer \(n_1\) such that \(\text{ord}(b_{n_1}, x) = \text{ord}(I, x)\). We write \(\ell = \text{ord}(I, x)\). Then there are positive integers \(j_1, j_2, \ldots, j_\ell\) such that
\[
\text{ord}\left(\prod_{i=1}^{\ell} \varphi_{j_i,n_1}, x\right) = \ell \quad \text{and} \quad \text{ord}\left(b_{n_1}/\prod_{i=1}^{\ell} \varphi_{j_i,n_1}, x\right) = 0.
\]
Since \(b_n \in I\) and \(b_n \prec b_{n_1}\) for every \(n \geq n_1\), \(\text{ord}(b_n, x) = \ell\) and \(\varphi_{j_i,n}(x) = 0\) for every \(1 \leq i \leq \ell\) and \(n \geq n_1\). Thus for any \(n \geq n_1\) we have
\[
\text{ord}(I, x) = \text{ord}(b_n, x) = \text{ord}\left(\prod_{j=1}^{m} \varphi_{j,n}, x\right)
\]
\[
= \sum_{i=1}^{\ell} \text{ord}(\varphi_{j_i,n}, x) = \#\{j : x \in E_j, 1 \leq j \leq m\},
\]
where \(\#A\) denotes the number of elements in a set \(A\). Let
\[
J = \bigotimes_{j=1}^{m} I(E_j).
\]
By Lemma 2.5, we have \(ord(I(E_j), x) = 1 \) for every \(x \in E_j \) and \(Z(I(E_j)) = E_j \) for every \(1 \leq j \leq m \). Hence by Lemma 2.6 \(Z(J) = \bigcup_{j=1}^{m} E_j = Z(I) \) and
\[
ord(J, x) = \sum_{j=1}^{m} ord(I(E_j), x) = \# \{ j : x \in E_j, 1 \leq j \leq m \}
\]
for every \(x \in Z(I) \). By Theorem A, we have \(I = J = \bigodot_{j=1}^{m} I(E_j) \).

(ii) \(\Rightarrow \) (iii) Suppose that condition (ii) holds. By Lemma 2.6, \(Z(I) = \bigcup_{j=1}^{m} Z(E_j) \) for every \(1 \leq j \leq m \), so \(Z(I) \) is a \(G_\delta \)-set. By Lemma 2.4 for each \(1 \leq j \leq m \) there is an interpolating Blaschke product \(\varphi_j \) such that \(E_j \subset Z(\varphi_j) \). Let \(\Phi = \prod_{j=1}^{m} \varphi_j \). By Lemma 2.13 for each \(1 \leq j \leq m \) there exists an interpolating Blaschke product \(b_j \) such that \(E_j \subset Z(b_j) \) and \(Z(\Phi) \cap Z(b_j) = Z(\Phi) \cap E_j = E_j \). We note that \(Z(I) \subset Z(\Phi) \). Let \(B = \prod_{j=1}^{m} b_j \). Then for any \(x \in Z(I) \), we have
\[
ord(B, x) = \ord(\prod_{j=1}^{m} b_j, x) = \sum_{j=1}^{m} \ord(b_j, x) = \# \{ j : x \in E_j, 1 \leq j \leq m \}.
\]
By Lemmas 2.5 and 2.6 we have
\[
ord(I, x) = \ord(\bigodot_{j=1}^{m} I(E_j), x) = \sum_{j=1}^{m} \ord(I(E_j), x) = \# \{ j : x \in E_j, 1 \leq j \leq m \}.
\]
Thus we get \(\ord(B, x) = \ord(I, x) \) for every \(x \in Z(I) \). By Theorem A, we have \(B \in I \).

(iii) \(\Rightarrow \) (iv) Suppose that condition (iii) holds. Let \(B_1 \) be a Carleson-Newman Blaschke product of order \(m \) in \(I \) satisfying \(\ord(B_1, x) = \ord(I, x) \) for every \(x \in Z(I) \). Let \(\varphi_1, \varphi_2, \ldots, \varphi_m \) be interpolating Blaschke products satisfying \(B_1 = \prod_{j=1}^{m} \varphi_j \). For each \(1 \leq j \leq m \), let \(E_j = Z(I) \cap Z(\varphi_j) \). Since \(Z(I) \) is a \(G_\delta \)-set, \(E_j \) is a closed \(G_\delta \)-set. By Lemma 2.13 there is an interpolating Blaschke product \(b_j \) such that \(Z(B_1) \cap Z(b_j) = E_j \). Let \(B_2 = \prod_{j=1}^{m} b_j \). For any \(x \in Z(I) \), we have
\[
ord(B_2, x) = \sum_{j=1}^{m} \ord(b_j, x) = \# \{ j : x \in E_j, 1 \leq j \leq m \} = \ord(B_1, x) \geq \ord(I, x).
\]
By Theorem A, we have \(B_2 \in I \). We also have
\[
Z(B_1) \cap Z(B_2) = Z(B_1) \cap \bigcup_{j=1}^{m} Z(b_j) = \bigcup_{j=1}^{m} E_j = Z(I) \cap Z(B_1) = Z(I).
\]
Let \(J = I[B_1, B_2] \). Then \(Z(J) = Z(I) \) and \(\ord(J, x) = \ord(I, x) \) for every \(x \in Z(I) \). By Theorem A again, we have \(J = I \).

(iv) \(\Rightarrow \) (i) is trivial. \(\square \)
In the following example, we shall show that there exist compact \(\rho \)-separated \(G_\delta \)-subsets \(E_1 \) and \(E_2 \) of \(G \) such that the ideal \(I(E_1) \cap I(E_2) \) is not countably generated.

Example 2.14. Let \(\{ \theta_k \}_k \) be a sequence of numbers such that \(0 < \theta_{k+1} < \theta_k < 1 \) and \(\theta_k \to 0 \) as \(k \to \infty \). It is known that there is an interpolating Blaschke product \(B_1 \) with zeros \(\{ z_n \}_n \) in \(D \) such that

\[
\overline{\{ z_n \}_n}^c \setminus \{ z_n \}_n = \{ e^{i\theta_k} : k \geq 1 \} \cup \{ 1 \},
\]

where \(\overline{\{ z_n \}_n}^c \) is the closure of \(\{ z_n \}_n \) in \(\mathbb{C} \). Let \(\mathbb{N} \) be the set of positive integers. We may divide \(\mathbb{N} \) as \(\mathbb{N} = \bigcup_{k=1}^{\infty} N_k \) such that \(N_k \cap N_j = \emptyset \) for \(k \neq j \) and

\[
\{ z_n : n \in N_k \}^c \setminus \{ z_n : n \in N_k \} = \{ e^{i\theta_k} \}, \quad k \in \mathbb{N}.
\]

Let \(b_k \) be the subproduct of \(B_1 \) with zeros \(\{ z_n : n \in N_k \} \). Then \(B_1 = \prod_{k=1}^{\infty} b_k \).

Let \(\{ \varepsilon_k \}_k \) be a sequence of numbers such that \(0 < \varepsilon_k < 1 \) and \(\varepsilon_k \to 0 \) as \(k \to \infty \). Let \(q_k(z) = (b_k(z) - \varepsilon_k)/(1 - \varepsilon_k b_k(z)) \). Taking smaller \(\varepsilon_k \), we may assume that \(B_2 := \prod_{k=1}^{\infty} q_k \) is an interpolating Blaschke product and

\[
\left(\bigcup_{k=1}^{\infty} Z(b_k) \right) \cap \left(\bigcup_{k=1}^{\infty} Z(q_k) \right) = \emptyset.
\]

Let

\[
E_1 = Z(B_1) \setminus D \quad \text{and} \quad E_2 = Z(B_2) \setminus D.
\]

Then \(E_1, E_2 \) are compact \(\rho \)-separated \(G_\delta \)-subsets of \(G \),

\[
E_1 = \left(\bigcup_{k=1}^{\infty} (Z(b_k) \setminus D) \right) \cup \left(E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k) \right)
\]

and

\[
E_2 = \left(\bigcup_{k=1}^{\infty} (Z(q_k) \setminus D) \right) \cup \left(E_2 \setminus \bigcup_{k=1}^{\infty} Z(q_k) \right).
\]

By Lemma 2.3, \(I(E_1) \) and \(I(E_2) \) are countably generated closed ideals in \(H^\infty \). Let \(I = I(E_1) \cap I(E_2) \). Then \(I = I(E_1 \cup E_2) \). By the construction, we may check that

\[
E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k) = E_2 \setminus \bigcup_{k=1}^{\infty} Z(q_k)
\]

and

\[
\bigcup_{k=1}^{\infty} (Z(b_k) \setminus D) \setminus \bigcup_{k=1}^{\infty} Z(b_k) = \bigcup_{k=1}^{\infty} (Z(q_k) \setminus D) \setminus \bigcup_{k=1}^{\infty} Z(q_k)
\]

\[
\subset E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k).
\]

Let \(\Omega \) be the set of all subproducts \(q \) of \(B_2 \) satisfying

\[
\bigcup_{k=1}^{\infty} (Z(q_k) \setminus D) \subset Z(q).
\]
COUNTABLY GENERATED CLOSED IDEALS IN H^∞

Then we have $B_1q \in I$ for every $q \in \Omega$ and

$$\bigcap_{q \in \Omega} Z(q) = \bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D}).$$

By this fact, we have

$$Z_2(I) = \bigcup_{k=1}^{\infty} (Z(b_k) \setminus \mathbb{D}) \setminus \bigcup_{k=1}^{\infty} Z(b_k) = \bigcup_{k=1}^{\infty} Z(b_k) \setminus \bigcup_{k=1}^{\infty} Z(b_k),$$

and $Z_2(I)$ is not a G_δ-set (see Example 2.9 in [12]). By Lemma 2.3 I is not countably generated. We note that $I = \overline{I(E_1) \otimes I(E_2 \setminus E_1)}$.

References

