GLEASON PARTS AND COUNTABLY GENERATED CLOSED IDEALS IN H^∞

KEI JI IZUCHI AND YUKO IZUCHI

Abstract. It is proved that a countably generated closed ideal in H^∞ whose common zero set is contained in the union set of nontrivial Gleason parts of H^∞ is generated by two Carleson-Newman Blaschke products as a closed ideal.

1. Introduction

Let H^∞ be the Banach algebra of bounded analytic functions on the open unit disk \mathbb{D} with the supremum norm $\| \cdot \|_\infty$. We denote by $M(H^\infty)$ the maximal ideal space of H^∞, that is, $M(H^\infty)$ is the family of nonzero multiplicative linear functionals on H^∞ with the weak*-topology. For a subset E of $M(H^\infty)$, we denote by \overline{E} the closure of E in $M(H^\infty)$. We identify a function f in H^∞ with its Gelfand transform $\hat{f}(m) = m(f)$, $m \in M(H^\infty)$, so we think of f as a continuous function on $M(H^\infty)$. For a sequence $\{a_n\}_n$ in \mathbb{D} satisfying $\sum_{n=1}^{\infty}(1 - |a_n|) < \infty$, we have the Blaschke product

$$b(z) = \prod_{n=1}^{\infty} \frac{-\overline{a}_n z - a_n}{|a_n| - \overline{a}_n z}, \quad z \in \mathbb{D},$$

where if $a_n = 0$, we consider that $-\overline{a}_n/|a_n| = 1$. We call $\{a_n\}_n$ and $b(z)$ interpolating if for any bounded sequence of complex numbers $\{c_n\}_n$ there exists f in H^∞ such that $f(a_n) = c_n$ for every $n \geq 1$. In [2], Carleson gave a characterization of interpolating sequences. A Blaschke product B is said to be Carleson-Newman if $B = \prod_{j=1}^{m} b_j$ for finitely many interpolating Blaschke products b_1, b_2, \ldots, b_m. In this case, there are many ways to give such a factorization. If m is the minimal number of interpolating Blaschke products, B is said to be a Carleson-Newman Blaschke product of order m. In the study of the structure of H^∞, Carleson-Newman Blaschke products have played an important role (see [3, 5, 8, 11]). For Blaschke products b_1 and b_2, we write $b_1 \prec b_2$ if b_1 is a subproduct of b_2.

For $x, y \in M(H^\infty)$, the pseudo-hyperbolic distance is defined by

$$\rho(x, y) = \sup \{ \| f(x) \| : f(y) = 0, f \in H^\infty, \| f \|_\infty \leq 1 \}.$$

A subset E of $M(H^\infty)$ is said to be ρ-separated if there is $\varepsilon > 0$ such that $\rho(x, y) \geq \varepsilon$ for every $x, y \in E$ with $x \neq y$. The set

$$P(x) = \{ y \in M(H^\infty) : \rho(y, x) < 1 \}$$

Received by the editors May 15, 2011 and, in revised form, August 5, 2011.
2010 Mathematics Subject Classification. Primary 30H50, 30H05; Secondary 30J10.

Key words and phrases. Gleason part, countably generated closed ideal, Carleson-Newman Blaschke product, algebra of bounded analytic functions.

The first author was partially supported by Grant-in-Aid for Scientific Research (No.21540166), Japan Society for the Promotion of Science.

©2013 American Mathematical Society
Reverts to public domain 28 years from publication
5071
is called the Gleason part of H^∞ containing $x \in M(H^\infty)$. If $P(x) \neq \{x\}$, $P(x)$ is said to be nontrivial. We denote by G the union set of all nontrivial Gleason parts in $M(H^\infty)$. In [2] (see also [3]), Hoffman studied the structure of Gleason parts of H^∞ extensively. For $x \in M(H^\infty)$, he proved that $x \in G$ if and only if there is an interpolating Blaschke product b satisfying $b(x) = 0$. He also proved that for an interpolating Blaschke product b, there exists $\varepsilon > 0$ such that $\{|b| < \varepsilon\} \subset G$, where

$$\{|b| < \varepsilon\} = \{x \in M(H^\infty) : |b(x)| < \varepsilon\}.$$

This fact shows that G is an open subset of $M(H^\infty)$, and for a Carleson-Newman Blaschke product B there is $\varepsilon > 0$ such that $\{|B| < \varepsilon\} \subset G$. Hoffman also showed that for a nontrivial Gleason part $P(x)$ of H^∞, there is a one-to-one, onto and continuous map $L_x : \mathbb{D} \to P(x)$ such that $L_x(0) = x$ and $f \circ L_x \in H^\infty$ for every $f \in H^\infty$. For $f \in H^\infty$, we write

$$Z(f) = \{x \in M(H^\infty) : f(x) = 0\}.$$

It is known that if b is an interpolating Blaschke product with zeros $\{z_n\}_n$ in \mathbb{D}, then $Z(b) = \overline{\{z_n\}_n}$, $Z(b)$ is ρ-separated and homeomorphic to the Stone-\v{C}ech compactification of the set of natural numbers, so $Z(b)$ is a totally disconnected set (see [8], [7]). Hence if B is a Carleson-Newman Blaschke product, then $Z(B)$ is also totally disconnected. Let $f \in H^\infty$. For $z \in \mathbb{D}$, we denote by $ord(f, z)$ the order of zero of f at z. For $x \in G \setminus \mathbb{D}$, we define $ord(f, x) = ord(f \circ L_x, 0)$. For $x \in M(H^\infty) \setminus G$, we put as usual $ord(f, x) = \infty$ if $f(x) = 0$ and $ord(f, x) = 0$ if $f(x) \neq 0$. Clearly, if b is an interpolating Blaschke product, then $ord(b, x) \leq 1$. If b is a Carleson-Newman Blaschke product of order m, then $ord(b, x) \leq m$ for every x.

Let I be a closed ideal in H^∞. We write

$$Z(I) = \bigcap_{f \in I} Z(f)$$

and

$$ord(I, x) = \inf_{f \in I} ord(f, x), \quad x \in M(H^\infty).$$

For each $1 \leq j \leq \infty$ and $f \in H^\infty$, we put

$$Z_j(f) = \{x \in M(H^\infty) : ord(f, x) \geq j\}$$

and

$$Z_j(I) = \{x \in M(H^\infty) : ord(I, x) \geq j\}.$$

It seems very difficult to study ideal theory in H^∞ generally (see [1]). In [4], Gorkin, Mortini and the first author proved the following two theorems for a closed ideal I satisfying $Z(I) \subset G$. In this case, by Theorem 2.3 in [5], I contains a Carleson-Newman Blaschke product, so $\sup_{x \in Z(I)} ord(I, x) < \infty$ and $Z(I)$ is totally disconnected (see also [14]).

Theorem A. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$. Then I coincides with the set of all f in H^∞ satisfying $ord(f, x) \geq ord(I, x)$ for every $x \in Z(I)$.

This shows that if I_1, I_2 are closed ideals in H^∞ such that $Z(I_i) \subset G$ for $i = 1, 2$, $Z(I_1) = Z(I_2)$ and $ord(I_1, x) = ord(I_2, x)$ for every $x \in Z(I_1)$, then we have $I_1 = I_2$.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem B. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \text{ord}(I, x)$. For each $1 \leq j \leq m$, let U_j be an open subset of $M(H^\infty)$ satisfying $Z_j(I) \subset U_j$. Then I is algebraically generated by Carleson-Newman Blaschke products B of order m in I such that $Z_j(B) \subset U_j$ for $1 \leq j \leq m$.

The above two theorems give us a great deal of information about closed ideals I satisfying $Z(I) \subset G$. In [12, 13], the authors studied closed ideals I satisfying $Z(I) \subset G$ extensively.

For a sequence $\{f_n\}_n$ in H^∞, we denote by $I[f_n : n \geq 1]$ the closed ideal in H^∞ generated by functions $f_n, n = 1, 2, \cdots$; that is,

$$I[f_n : n \geq 1] = \bigcup_{n=1}^\infty \sum_{j=1}^n f_j H^\infty,$$

where the bar indicates the closure in H^∞. The closed ideal $I[f_n : n \geq 1]$ is called a countably generated closed ideal in H^∞. In this paper, we study the structure of countably generated closed ideals I satisfying $Z(I) \subset G$. For a closed subset E of $M(H^\infty)$, let $I(E) = \{ f \in H^\infty : f(x) = 0, x \in E \}$. Then $I(E)$ is a closed ideal in H^∞ and $E \subset Z(I(E))$. For closed ideals I_1, I_2, \cdots, I_m in H^∞, let $\bigotimes_{i=1}^m I_i$ and $\bigotimes_{i=1}^m I_i$ be the tensor product and the closed tensor product of I_1, I_2, \cdots, I_m, respectively. That is, $\bigotimes_{i=1}^m I_i$ is an ideal generated by functions $\prod_{i=1}^m f_i$, where $f_i \in I_i, 1 \leq i \leq m$, and $\bigotimes_{i=1}^m I_i = \bigotimes_{i=1}^m I_i$. In Section 2, we shall prove the following theorem.

Theorem 1.1. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \text{ord}(I, x)$. Then the following conditions are equivalent.

(i) I is a countably generated closed ideal.

(ii) There are compact ϱ-separated G_δ-subsets E_1, E_2, \cdots, E_m of G such that $I = \bigotimes_{j=1}^m I(E_j)$.

(iii) There is a Carleson-Newman Blaschke product B of order m in I such that $\text{ord}(B, x) = \text{ord}(I, x)$ for every $x \in Z(I)$, and $Z(I)$ is a G_δ-set.

(iv) There are two Carleson-Newman Blaschke products B_1, B_2 in I such that $I = I[B_1, B_2]$.

For a compact ϱ-separated G_δ-subset E of G, there is an interpolating Blaschke product b satisfying $E \subset Z(b)$, and $I(E)$ is a countably generated closed ideal. We shall show in Example 2.14 that there exist compact ϱ-separated G_δ-subsets E_1 and E_2 of G such that $I(E_1) \cap I(E_2)$ is not countably generated. If I is a countably generated closed ideal in H^∞, then by Theorem 1.1, $Z_j(I)$ is a G_δ-set for every $1 \leq j \leq \infty$. But if I is the closed ideal given in Example 2.14, then $Z_2(I)$ is not a G_δ-set.

2. Countably generated closed ideals

To prove Theorem 1.1 we need some lemmas. For a sequence $\{f_n\}_n$ in H^∞ and $1 \leq j \leq \infty$, it is not difficult to show that

$$Z_j(I[f_n : n \geq 1]) = \bigcap_{n=1}^\infty Z_j(f_n)$$

and

$$\text{ord}(I[f_n : n \geq 1], x) = \inf_{n \geq 1} \text{ord}(f_n, x), \quad x \in Z(I[f_n : n \geq 1]).$$
Lemma 2.1. Let B be a Carleson-Newman Blaschke product. Then $Z_j(B)$ is a closed G_δ-set for every $1 \leq j < \infty$.

Proof. Let $B = \prod_{i=1}^k b_i$, where b_i is an interpolating Blaschke product for every $1 \leq i \leq k$. Since $\text{ord}(b_i, x) \leq 1$ for $x \in M(H^\infty)$, we have that $Z_j(B) = \emptyset$ for $j > k$. Suppose that $1 \leq j \leq k$. Put $E_i = Z(b_i)$. Then E_i is a closed G_δ-set. We have

$$Z_j(B) = \bigcup \left\{ \bigcap_{\ell=1}^j E_{i_{\ell}} : 1 \leq i_1 < i_2 < \cdots < i_j \leq k \right\}.$$

Therefore $Z_j(B)$ is a closed G_δ-set. \hfill \square

Lemma 2.2. If $f \in H^\infty$ and $f \neq 0$, then $Z_j(f)$ is a closed G_δ-set for every $1 \leq j \leq \infty$.

Proof. Let $f = Bh$, where B is a Blaschke product and $h \in H^\infty$ satisfying $|h| > 0$ on \mathbb{D}. Then $Z_\infty(h) = Z(h)$ and $Z_\infty(h)$ is a closed G_δ-set. By Corollary 3.1 in [9], $Z_\infty(B)$ is a closed G_δ-set. Then $Z_\infty(f) = Z_\infty(B) \cup Z_\infty(h)$ is a closed G_δ-set. We have

$$Z(f) \setminus Z_\infty(f) = (Z(B) \cup Z(h)) \setminus Z_\infty(f) = (Z(B) \cup Z_\infty(h)) \setminus Z_\infty(f) = Z(B) \setminus Z_\infty(f).$$

By Lemma 4.6 in [9], $Z(B) \setminus Z_\infty(f)$ is a totally disconnected set. Hence there is a sequence of open and closed subsets $\{E_n\}_n$ of $Z(B)$ such that $Z(B) \setminus Z_\infty(f) = \bigcup_{n=1}^\infty E_n$ and $E_n \cap E_k = \emptyset$ for $n \neq k$. Let b_n be the subproduct of B with zeros $Z(B) \cap E_n \cap \mathbb{D}$ counting multiplicities. Since $Z(B) \cap \mathbb{D} \subset Z(B) \setminus Z_\infty(f)$, we have $B = \prod_{n=1}^\infty b_n$ and $Z(b_n) = E_n$ for every $n \geq 1$. We note that b_n is a Carleson-Newman Blaschke product. For each $1 \leq j < \infty$, we have

$$Z_j(f) = Z_\infty(f) \cup \bigcup_{n=1}^\infty Z_j(b_n).$$

By Lemma 2.1 $Z_j(b_n)$ is a closed G_δ-set; so is $Z_j(f)$. \hfill \square

Lemma 2.3. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \text{ord}(I, x)$. Then I is a countably generated closed ideal if and only if $Z_j(I)$ is a closed G_δ-set for every $1 \leq j \leq m$. In this case, I is generated by countably many Carleson-Newman Blaschke products.

Proof. Suppose that $I = I[f_n : n \geq 1]$ for a sequence $\{f_n\}_n$ in H^∞. For each $1 \leq j \leq m$, we have $Z_j(I) = \bigcap_{n=1}^\infty Z_j(f_n)$. By Lemma 2.2, $Z_j(I)$ is a closed G_δ-set.

Suppose that $Z_j(I)$ is a closed G_δ-set for every $1 \leq j \leq m$. For each $1 \leq j \leq m$, let $\{U_{j,n}\}_n$ be a sequence of open subsets of G such that $Z_j(I) = \bigcap_{n=1}^\infty U_{j,n}$. By Theorem B, there is a sequence of Carleson-Newman Blaschke products $\{\varphi_n\}_n$ in I such that $Z_j(\varphi_n) \subset U_{j,n}$ for every $1 \leq j \leq m$ and $n \geq 1$. Let $J = I[\varphi_n : n \geq 1]$. Then $J \subset I$ and $Z(I) \subset Z(J)$. We have $Z(J) \subset Z(\varphi_n) \subset U_{1,n}$ for every $n \geq 1$. Then $Z(J) \subset \bigcap_{n=1}^\infty U_{1,n} = Z_1(I) = Z(I)$. Hence $Z(J) = Z(I)$.

Let $x \in Z(I)$ and $\ell = \text{ord}(I, x)$. Since $\varphi_n \in I$, $\ell \leq \text{ord}(\varphi_n, x)$ for every $n \geq 1$. Since $x \notin Z_{\ell+1}(I)$, there is a positive integer k such that $x \notin U_{\ell+1,k}$. Hence
$\ell \leq \text{ord}(\varphi_k, x) \leq \ell$. Therefore

$$\ell = \text{ord}(I, x) \leq \text{ord}(J, x) \leq \text{ord}(\varphi_k, x) = \ell.$$

Thus we get $\text{ord}(J, x) = \text{ord}(I, x)$ for every $x \in Z(I)$. By Theorem A, we have $J = I$. □

The following lemma follows from Theorem 3.1 in [10].

Lemma 2.4. Let E be a compact ρ-separated subset of G and U be an open subset of $M(H^\infty)$ satisfying $E \subset U$. Then there exists an interpolating Blaschke product b such that $E \subset Z(b) \subset U$.

Lemma 2.5. Let E be a compact ρ-separated G_δ-subset of G. Then $I(E)$ is a countably generated closed ideal in H^∞, E is a totally disconnected set, $Z(I(E)) = E$ and $\text{ord}(I(E), x) = 1$ for every $x \in E$.

Proof. By Lemma 2.4, there is an interpolating Blaschke product b such that $E \subset Z(b) \subset G$. Hence $\text{ord}(I(E), x) = 1$ for every $x \in E$. Since $Z(b)$ is a totally disconnected set, so is E. Let $\{U_n\}_n$ be a sequence of open subsets of G satisfying $E = \bigcap_{n=1}^{\infty} U_n$ and $Z(b) \cap U_n$ be an open and closed subset of $Z(b)$ for every $n \geq 1$. Let b_n be the subproduct of b with zeros $Z(b) \cap U_n \cap \mathbb{D}$. Then $E \subset Z(b_n) \subset U_n$. Let $J = I[b_n : n \geq 1]$. Then we have $J \subset I(E)$ and

$$E \subset Z(I(E)) \subset Z(J) \subset \bigcap_{n=1}^{\infty} U_n = E.$$

Hence $Z(I(E)) = Z(J) = E$. We have $\text{ord}(J, x) = 1$ for every $x \in E$. By Theorem A, we get $J = I(E)$. □

The following lemma follows from the definition of a closed tensor product.

Lemma 2.6. Let I_1, I_2, \ldots, I_m be countably generated closed ideals in H^∞. Then $\bigotimes_{j=1}^{m} I_j$ is a countably generated closed ideal, $Z(\bigotimes_{j=1}^{m} I_j) = \bigcup_{j=1}^{m} Z(I_j)$ and $\text{ord}(\bigotimes_{j=1}^{m} I_j, x) = \sum_{j=1}^{m} \text{ord}(I_j, x)$ for every $x \in Z(\bigotimes_{j=1}^{m} I_j)$.

For closed ideals I_1, I_2, \ldots, I_m in H^∞ satisfying $Z(I_j) \subset G$ for every $1 \leq j \leq m$, in [13] Corollary 9.15] the authors proved that $\bigotimes_{j=1}^{m} I_j = \bigotimes_{j=1}^{m} I_j$.

Lemma 2.7. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$ and $x \in Z(I)$. Let B be a Carleson-Newman Blaschke product in I and W be an open subset of $M(H^\infty)$ satisfying $x \in W$. Then there is an open subset U of $M(H^\infty)$ such that $x \in U \subset G \cap W$ and $Z(I) \cap U$ is an open and closed subset of $Z(I)$, and there is a Carleson-Newman Blaschke product φ of order $\text{ord}(I, x)$ such that $Z(\varphi) \subset U$, $\varphi \prec B$ and $\text{ord}(I, y) \leq \text{ord}(\varphi, y) \leq \text{ord}(I, x)$ for every $y \in Z(I) \cap U$.

Proof. Since $Z(I)$ is a totally disconnected set (see [4] Theorem 2.2), we may take a sufficiently small open subset U of $M(H^\infty)$ such that $x \in U \subset G \cap W$ and $Z(I) \cap U$ is an open and closed subset of $Z(I)$. Since $\text{ord}(I, y)$ is upper semicontinuous in $y \in Z(I)$ (see [4] Lemma 1.2]), we may assume that $\text{ord}(I, y) \leq \text{ord}(I, x)$ for every $y \in Z(I) \cap U$. Let $I_U = \{ f \in H^\infty : \text{ord}(f, y) \geq \text{ord}(I, y), y \in Z(I) \cap U \}$.

Then by Theorem A, I_U is a closed ideal in H^∞, $I \subset I_U$, $Z(I_U) = Z(I) \cap U$ and $\text{ord}(I_U, y) = \text{ord}(I, y)$ for every $y \in Z(I) \cap U$. By [13] Proposition 8.9], there is a
Carleson-Newman Blaschke product φ of order $ord(I, x)$ in I_U such that $Z(\varphi) \subset U$, $\varphi < B$ and $ord(\varphi, x) = ord(I_U, x)$. For each $y \in Z(I) \cap U$, we have

$$ord(I, y) = ord(I_U, y) \leq ord(\varphi, y) \leq ord(I, x).$$

\[\square \]

Lemma 2.8. Let I be a closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} ord(I, x)$. Let W_1, W_2, \cdots, W_m be open subsets of $M(H^\infty)$ such that $Z_j(I) \subset W_j$ for every $1 \leq j \leq m$ and $W_m \subset W_{m-1} \subset \cdots \subset W_1$. Let B be a Carleson-Newman Blaschke product in I. Then there is a Carleson-Newman Blaschke product b such that $b \in I$, $b < B$ and $ord(b, y) \leq j$ for every $y \in Z(I) \cap (W_j \setminus W_{j+1})$ and $1 \leq j \leq m$, where $W_{m+1} = \emptyset$.

Proof. For each $x \in Z(I)$, since $Z(I) \subset \bigcup_{j=1}^m (W_j \setminus W_{j+1})$ there exists $1 \leq j \leq m$ such that $x \in W_j \setminus W_{j+1}$. Then $ord(I, x) \leq j$. By Lemma 2.7 there is an open subset U_x of $M(H^\infty)$ satisfying that $x \in U_x \subset G \cap W_j$ and $Z(I) \cap U_x$ is an open and closed subset of $Z(I)$, and there is a Carleson-Newman Blaschke product φ_x of order $ord(I, x)$ such that $Z(\varphi_x) \subset U_x$, $\varphi_x < B$ and $ord(I, y) \leq ord(\varphi_x, y) \leq ord(I, x)$ for every $y \in Z(I) \cap U_x$.

Since $Z(I)$ is a compact set, there is a finite set $\{x_1, x_2, \cdots, x_s\}$ in $Z(I)$ such that $Z(I) \subset \bigcup_{i=1}^s U_{x_i}$. Let

$$E_1 = Z(I) \cap U_{x_1}, \quad E_2 = (Z(I) \cap U_{x_2}) \setminus (Z(I) \cap U_{x_1}),$$

$$\cdots,$$

$$E_s = (Z(I) \cap U_{x_s}) \setminus \bigcup_{i=1}^{s-1} (Z(I) \cap U_{x_i}).$$

Then E_i is an open and closed subset of $Z(I)$, $E_i \cap E_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^s E_i = Z(I)$. It may be that $x_i \notin E_i$ for some $1 \leq i \leq s$. We may take open subsets V_1, V_2, \cdots, V_s of $M(H^\infty)$ satisfying that $E_i \subset V_i \subset U_x$, and $V_i \cap \overline{V}_j = \emptyset$ for $i \neq j$. Let ψ_i be the Blaschke subproduct of φ_x with zeros $Z(\varphi_x) \cap V_i \cap \mathbb{D}$ counting multiplicities. Then $Z(\psi_i) \cap Z(\psi_j) = \emptyset$ for $i \neq j$ and $ord(\psi_i, y) = ord(\varphi_x, y)$ for every $y \in E_i$ and $1 \leq i \leq s$. Let $b = \prod_{i=1}^s \psi_i$. Then $b < B$.

Let $y \in Z(I)$. Then there is the unique $1 \leq j \leq m$ such that $y \in W_j \setminus W_{j+1}$. Also there is the unique $1 \leq i \leq s$ such that $y \in E_i$. So we have

$$ord(b, y) = ord(\psi_i, y) = ord(\varphi_x, y) \leq ord(I, x_i).$$

Here we have two cases.

Case 1. Suppose that $x_i \in W_j \setminus W_{j+1}$. Then we have

$$ord(I, y) \leq ord(\varphi_x, y) \leq ord(I, x_i) \leq j.$$

Hence $ord(I, y) \leq ord(b, y) \leq j$.

Case 2. Suppose that $x_i \in W_k \setminus W_{k+1}$ for some $k \neq j$. If $k < j$, then $ord(I, x_i) \leq k < j$. Hence

$$ord(I, y) \leq ord(\varphi_x, y) = ord(b, y) < j.$$

If $k > j$, then $y \in U_{x_i} \subset W_k$. Since $y \notin W_{j+1}$ and $W_k \subset W_{j+1}$, we have $y \notin W_k$. This is a contradiction.

By the above two cases, we have $ord(I, y) \leq ord(b, y) \leq j$ for every $y \in Z(I) \cap (W_j \setminus W_{j+1})$. By Theorem A, we have $b \in I$. Thus we get the assertion. \[\square \]
Lemma 2.9. Let I be a countably generated closed ideal in H^∞ satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \ord(I, x)$. Let B be a Carleson-Newman Blaschke product in I. Then there is a sequence of Carleson-Newman Blaschke products $\{b_n\}_n$ such that $b_1 < B$, $b_{n+1} < b_n$, $b_n \in I$ for every $n \geq 1$ and for each $x \in Z(I)$ there is a positive integer n satisfying $\ord(I, x) = \ord(b_n, x)$.

Proof. By Lemma 2.3, $Z_j(I)$ is a closed G_δ-set for every $1 \leq j \leq m$. For each $1 \leq j \leq m$, take a sequence of open subsets $\{W_{j,n}\}_n$ of $M(H^\infty)$ such that $\bigcap_{n=1}^\infty W_{j,n} = Z_j(I)$ and $W_{j,n+1} \subset W_{j,n}$ for every $n \geq 1$. Further we may assume that $W_{j+1,n} \subset W_{j,n}$ for every $1 \leq j \leq m$ and $n \geq 1$, where $W_{m+1,n} = \emptyset$ for every $n \geq 1$. By Lemma 2.8, there is a Carleson-Newman Blaschke product b_1 such that $b_1 < B$ and

$$\ord(b_1, y) \leq j$$

for every $y \in Z(I) \cap (W_{j,1} \setminus W_{j+1,1}$) and $1 \leq j \leq m$. By Lemma 2.8, again, there is a Carleson-Newman Blaschke product b_2 such that $b_2 < b_1$ and $\ord(b_2, y) \leq j$ for every $y \in Z(I) \cap (W_{j,2} \setminus W_{j+1,2})$ and $1 \leq j \leq m$. Inductively we may get a sequence of Carleson-Newman Blaschke products $\{b_n\}_n$ such that $b_n \in I$, $b_{n+1} < b_n$ and $\ord(b_n, y) \leq j$ for every $y \in Z(I) \cap (W_{j,n} \setminus W_{j+1,n})$ and $1 \leq j \leq m$.

Let $x \in Z(I)$ and $t = \ord(I, x)$. We consider two cases separately.

Case 1. Suppose that $t < m$. Then $x \notin Z_{t+1}(I)$ and there is a positive integer k such that $x \in Z(I) \cap (W_{t,k} \setminus W_{t+1,k})$. Hence $\ord(b_k, x) \leq t$. Since $b_k \in I$, we have $t = \ord(I, x) \leq \ord(b_k, x) \leq t$. Thus we get $\ord(I, x) = \ord(b_k, x)$.

Case 2. Suppose that $t = m$, that is, $\ord(I, x) = m$. Then $x \in Z(I) \cap (W_{m,n} \setminus W_{m,n+1})$ for every $n \geq 1$. Hence $\ord(b_n, x) \leq m$. Since $b_n \in I$, we have $m \leq \ord(b_n, x)$. Thus we get $\ord(I, x) = \ord(b_n, x)$ for every $n \geq 1$.

The following is due to Hoffman [7].

Lemma 2.10. For any interpolating Blaschke product b with zeros $\{z_n\}_n$ in \mathbb{D}, there exists a positive number $\lambda(b)$ such that a sequence $\{w_n\}_n$ in \mathbb{D} satisfying $\rho(w_n, z_n) < \lambda(b)$ is an interpolating sequence.

Lemma 2.11. Let I be a closed ideal in H^∞ and $Z(I) \subset G$. Let B be a Carleson-Newman Blaschke product in I. Then there is a Carleson-Newman Blaschke product b in I satisfying the following conditions.

(i) $\ord(b, x) = \ord(B, x)$ for every $x \in Z(I) \setminus \mathbb{D}$.
(ii) $\ord(b, z) = \ord(I, z)$ for every $z \in Z(I) \cap \mathbb{D}$.
(iii) $\ord(b, z) = 1$ for every $z \in (Z(B) \setminus Z(I)) \cap \mathbb{D}$.

Proof. Let $\varphi_1, \varphi_2, \ldots, \varphi_m$ be interpolating Blaschke products satisfying $B = \prod_{j=1}^m \varphi_j$. Let $\lambda = \min_{1 \leq j \leq m} \lambda(\varphi_j)$. Then $\lambda > 0$. Let $\{z_n\}_n = Z(B) \cap \mathbb{D}$ and $k_n = \ord(B, z_n)$. Then $\sup_{n \geq 1} k_n < \infty$. Let $\{\varepsilon_n\}_n$ be a sequence of numbers with $0 < \varepsilon_n < \lambda$ such that $\varepsilon_n \to 0$ as $n \to \infty$. We shall move the zeros of B a little. Let n be a positive integer. If $z_n \notin Z(I)$, then take $\{w_{n,1}, w_{n,2}, \ldots, w_{n,k_n}\}$ in \mathbb{D} such that $\rho(w_{n,i}, z_n) < \varepsilon_n$, $w_{n,i} \neq w_{n,j}$ for $i \neq j$ and

$$\{w_{n,1}, w_{n,2}, \ldots, w_{n,k_n}\} \cap \{z_n\}_n = \emptyset.$$
Further, we may assume that
\[\{w_{n,1}, w_{n,2}, \ldots, w_{n,k_n}\} \cap \{w_{j,1}, w_{j,2}, \ldots, w_{j,k_j}\} = \emptyset \]
for every \(n \neq j \) and
\[\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} (1 - |w_{n,i}|) < \infty. \]

Let \(b \) be the Blaschke product with zeros \(\{w_{n,i}\}_{n,i} \) counting multiplicities. By Lemma 2.10, \(b \) is a Carleson-Newman Blaschke product. We have \(\text{ord}(b, x) = \text{ord}(B, x) \) for every \(x \in Z(I) \setminus \mathbb{D} \). It is easy to see that \(b \) satisfies (ii) and (iii). Since \(\text{ord}(I, x) \leq \text{ord}(b, x) \) for every \(x \in Z(I) \), by Theorem A we have \(b \in I \).

Lemma 2.12. Let \(B \) be a Carleson-Newman Blaschke product and \(\{z_n\}_n \) be an interpolating sequence in \(\mathbb{D} \). If \(0 < \varepsilon < 1 \), then
\[\inf_n \sup_z \{|B(z)| : z \in \mathbb{D}, \rho(z, z_n) < \varepsilon \} > 0. \]

Proof. To prove the assertion, suppose not. Then there exists a subsequence \(\{n_j\}_j \) such that
\[\lim_{j \to \infty} \sup_{z} \{|B(z)| : z \in \mathbb{D}, \rho(z, z_{n_j}) < \varepsilon \} = 0. \]
Let \(x \) be a cluster point of \(\{z_{n_j}\}_j \) in \(M(H^\infty) \). By Hoffman’s work [7], it is easy to see that \(B \equiv 0 \) on \(P(x) \), the Gleason part of \(x \). By our assumption, \(B \not\equiv 0 \) on \(P(x) \), and this is a contradiction. \(\square \)

Lemma 2.13. Let \(B \) be a Carleson-Newman Blaschke product and \(b \) be an interpolating Blaschke product. Let \(E \) be a closed \(G_{\delta} \)-subset of \(Z(b) \). Then there is an interpolating Blaschke product \(\varphi \) such that \(E \subset Z(\varphi) \) and \(Z(B) \cap E = Z(B) \cap Z(\varphi) \).

Proof. If \(Z(B) \cap E = Z(B) \cap Z(b) \), then put \(\varphi = b \). Then we get the assertion. So we assume that \(Z(B) \cap E \subsetneq Z(B) \cap Z(b) \). By the assumptions, there is a sequence of closed subsets \(\{K_n\}_n \) of \(Z(b) \) such that
\[(Z(B) \cap Z(b)) \setminus E = \bigcup_{n=1}^{\infty} K_n \]
and \(K_n \cap K_k = \emptyset \) for \(n \neq k \). We note that
\[\bigcup_{n=1}^{\infty} K_n \setminus \bigcup_{n=1}^{\infty} K_n \subset E. \]
Take a sequence of open subsets \(\{U_n\}_n \) of \(M(H^\infty) \) such that \(K_n \subset U_n \), \(\overline{U_n} \cap \overline{U_k} = \emptyset \) for \(n \neq k \), \(E \cap \overline{U_n} = \emptyset \) and \(Z(b) \cap \overline{U_n} \) is an open and closed subset of \(Z(b) \) for every \(n \geq 1 \). Let \(b_n \) be the subproduct of \(b \) with zeros \(\{z_{n,\ell}\}_\ell := Z(b) \cap U_n \cap \mathbb{D} \). Then \(K_n \subset Z(b_n) \), \(E \cap Z(b_n) = \emptyset \) for every \(n \geq 1 \) and \(b = \prod_{n=0}^{\infty} b_n \) for some interpolating Blaschke product \(b_0 \). We note that
\[(Z(B) \cap Z(b)) \setminus \bigcup_{n=1}^{\infty} Z(b_n) \subset E. \]

Let \(\{\varepsilon_n\}_n \) be a sequence of numbers such that \(0 < \varepsilon_n < \lambda(b) \) and \(\varepsilon_n \to 0 \) as \(n \to \infty \). By Lemma 2.12, there is a sequence of positive numbers \(\{\delta_n\}_n \) such that
\[\sup \{|B(z)| : z \in \mathbb{D}, \rho(z, z_{n,\ell}) < \varepsilon_n \} > \delta_n \]
for every \(\ell \geq 1 \). For each \(\ell \geq 1 \), take \(w_{n,\ell} \in \mathbb{D} \) satisfying \(\rho(w_{n,\ell}, z_{n,\ell}) < \varepsilon_n \) and \(|B(w_{n,\ell})| > \delta_n \). By Lemma 2.10 \(\{w_{n,\ell}\}_\ell \) is an interpolating sequence for every \(n \geq 1 \). For each \(n \geq 1 \), let \(\varphi_n \) be the interpolating Blaschke product with zeros \(\{w_{n,\ell}\}_\ell \). Then \(Z(B) \cap Z(\varphi_n) = \emptyset \) and \(E \cap Z(\varphi_n) = \emptyset \) for every \(n \geq 1 \). Since
\[
\sup_{\ell \geq 1} \rho(w_{n,\ell}, z_{n,\ell}) \leq \varepsilon_n \to 0 \quad (n \to \infty),
\]
we have
\[
Z\left(\prod_{n=1}^{\infty} b_n \right) \setminus \bigcup_{n=1}^{\infty} Z(b_n) = Z\left(\prod_{n=1}^{\infty} \varphi_n \right) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n).
\]
Put \(\varphi = b_0 \prod_{n=1}^{\infty} \varphi_n \). Since
\[
\sup_{n,\ell \geq 1} \rho(w_{n,\ell}, z_{n,\ell}) < \lambda(b),
\]
by Lemma 2.10 \(\varphi \) is an interpolating Blaschke product. Since \(E \subset Z(b) \) and \(E \cap Z(b_n) = \emptyset \) for every \(n \geq 1 \), we have
\[
E \subset Z(b) \setminus \bigcup_{n=1}^{\infty} Z(b_n)
\quad = \quad \left(Z(b_0) \cup Z\left(\prod_{n=1}^{\infty} b_n \right) \right) \setminus \bigcup_{n=1}^{\infty} Z(b_n)
\quad = \quad \left(Z(b_0) \setminus \bigcup_{n=1}^{\infty} Z(b_n) \right) \cup \left(Z\left(\prod_{n=1}^{\infty} \varphi_n \right) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n) \right)
\quad = \quad Z(\varphi) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n).
\]
Hence \(E \subset Z(\varphi) \). Since \(Z(B) \cap Z(\varphi_n) = \emptyset \) for every \(n \geq 1 \), we have
\[
Z(B) \cap E \subset Z(B) \cap Z(\varphi) \subset Z(B) \cap \left(Z(\varphi) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n) \right)
\quad = \quad (Z(B) \cap Z(b)) \setminus \bigcup_{n=1}^{\infty} Z(b_n) \subset Z(B) \cap E.
\]
Hence we get \(Z(B) \cap E = Z(B) \cap Z(\varphi) \).
\[\square\]

Proof of Theorem 1.1 (i) \(\Rightarrow \) (ii) By Theorem B, there is a Carleson-Newman Blaschke product \(b_1 \) of order \(m \) in \(I \). By Lemma 2.11, we may assume that \(\text{ord}(b_1, z) = \text{ord}(I, z) \) for every \(z \in Z(I) \cap \mathbb{D} \) and \(\text{ord}(b_{n+1}, z) = 1 \) for every \(z \in (Z(b_1) \setminus Z(I)) \cap \mathbb{D} \). By Lemma 2.9 there is a sequence of Carleson-Newman Blaschke products \(\{b_n\}_n \) such that \(b_n \in I \), \(b_{n+1} < b_n \) for every \(n \geq 1 \), and for each \(x \in Z(I) \) there is a positive integer \(n \) satisfying \(\text{ord}(b_n, x) = \text{ord}(I, x) \).

Since the order of \(b_1 \) is equal to \(m \), there are interpolating Blaschke products \(\varphi_{1,1}, \varphi_{2,1}, \ldots, \varphi_{m,1} \) such that \(b_1 = \prod_{j=1}^{m} \varphi_{j,1} \). Since \(b_n \in I \) and \(b_{n+1} < b_n \) for every \(n \geq 1 \), we have \(\text{ord}(b_n, z) = \text{ord}(I, z) \) for \(z \in Z(I) \cap \mathbb{D} \) and \(\text{ord}(b_n, z) = 1 \) for \(z \in (Z(b_n) \setminus Z(I)) \cap \mathbb{D} \). Then there are the unique interpolating Blaschke products \(\varphi_{1,n}, \varphi_{2,n}, \ldots, \varphi_{m,n} \) such that \(b_n = \prod_{j=1}^{m} \varphi_{j,n} \) and \(\varphi_{j,n+1} < \varphi_{j,n} \) for every \(1 \leq j \leq m \). We note that if \(z \in Z(I) \cap \mathbb{D} \) and \(\varphi_{j,1}(z) = 0 \), then \(\varphi_{j,n}(z) = 0 \) for every \(n \geq 1 \).
For each $1 \leq j \leq m$, let
\[E_j = Z(I) \cap \bigcap_{n=1}^{\infty} Z(\varphi_{j,n}). \]

By Lemma 2.3, E_j is a compact G_δ-set. Since $\varphi_{j,n}$ is an interpolating Blaschke product, E_j is a ρ-separated set. Since $b_n \in I$,
\[Z(I) \subset Z(b_n) = \bigcup_{j=1}^{m} Z(\varphi_{j,n}), \]
so
\[Z(I) = \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})). \]

We have
\[\bigcup_{j=1}^{m} E_j \subset \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})) = Z(I). \]

Suppose that $\bigcup_{j=1}^{m} E_j \subsetneq Z(I)$ and $y \in Z(I) \setminus \bigcup_{j=1}^{m} E_j$. For each $1 \leq j \leq m$, since $y \notin E_j$ there is a positive integer n_j such that $y \notin Z(I) \cap Z(\varphi_{j,n_j})$. Let $n = \min_{1 \leq j \leq m} n_j$. Then
\[Z(I) \cap Z(\varphi_{j,n}) \subset Z(I) \cap Z(\varphi_{j,n_j}). \]

Hence
\[y \notin \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})) = Z(I). \]

But this is a contradiction. Thus we get
\[Z(I) = \bigcup_{j=1}^{m} E_j. \]

Let $x \in Z(I)$. Then there is a positive integer n_1 such that $ord(b_{n_1}, x) = ord(I, x)$. We write $\ell = ord(I, x)$. Then there are positive integers j_1, j_2, \cdots, j_ℓ such that
\[ord\left(\prod_{i=1}^{\ell} \varphi_{j_i,n_1}, x \right) = \ell \quad \text{and} \quad ord\left(b_{n_1} / \prod_{i=1}^{\ell} \varphi_{j_i,n_1}, x \right) = 0. \]

Since $b_n \in I$ and $b_n \prec b_{n_1}$ for every $n \geq n_1$, $ord(b_n, x) = \ell$ and $\varphi_{j_i,n}(x) = 0$ for every $1 \leq i \leq \ell$ and $n \geq n_1$. Thus for any $n \geq n_1$ we have
\[ord(I, x) = ord(b_n, x) = ord\left(\prod_{j=1}^{m} \varphi_{j,n}, x \right) \]
\[= \sum_{i=1}^{\ell} ord(\varphi_{j_i,n}, x) = \# \{ j : x \in E_j, 1 \leq j \leq m \}, \]
where $\#A$ denotes the number of elements in a set A. Let
\[J = \prod_{j=1}^{m} I(E_j). \]
By Lemma \ref{2.5}, we have \(\text{ord}(I(E_j), x) = 1 \) for every \(x \in E_j \) and \(Z(I(E_j)) = E_j \) for every \(1 \leq j \leq m \). Hence by Lemma \ref{2.6} \(Z(J) = \bigcup_{j=1}^m E_j = Z(I) \) and

\[
\text{ord}(J, x) = \sum_{j=1}^m \text{ord}(I(E_j), x) = \# \{ j : x \in E_j, 1 \leq j \leq m \}
\]

for every \(x \in Z(I) \). By Theorem A, we have \(I = J = \bigotimes_{j=1}^m I(E_j) \).

(ii) \(\Rightarrow \) (iii) Suppose that condition (ii) holds. By Lemma \ref{2.6},

\[
Z(I) = \bigcup_{j=1}^m Z(I(E_j)) = \bigcup_{j=1}^m E_j,
\]

so \(Z(I) \) is a \(G_\delta \)-set. By Lemma \ref{2.4}, for each \(1 \leq j \leq m \) there is an interpolating Blaschke product \(\varphi_j \) such that \(E_j \subset Z(\varphi_j) \). Let \(\Phi = \prod_{j=1}^m \varphi_j \). By Lemma \ref{2.13} for each \(1 \leq j \leq m \) there exists an interpolating Blaschke product \(b_j \) such that \(E_j \subset Z(b_j) \) and \(Z(\Phi) \cap Z(b_j) = Z(\Phi) \cap E_j = E_j \). We note that \(Z(I) \subset Z(\Phi) \). Let \(B = \prod_{j=1}^m b_j \). Then for any \(x \in Z(I) \), we have

\[
\text{ord}(B, x) = \text{ord}\left(\prod_{j=1}^m b_j, x \right) = \sum_{j=1}^m \text{ord}(b_j, x) = \# \{ j : x \in E_j, 1 \leq j \leq m \}.
\]

By Lemmas \ref{2.5} and \ref{2.6}, we have

\[
\text{ord}(I, x) = \text{ord}\left(\bigotimes_{j=1}^m I(E_j), x \right) = \sum_{j=1}^m \text{ord}(I(E_j), x) = \# \{ j : x \in E_j, 1 \leq j \leq m \}.
\]

Thus we get \(\text{ord}(B, x) = \text{ord}(I, x) \) for every \(x \in Z(I) \). By Theorem A, we have \(B \in I \).

(iii) \(\Rightarrow \) (iv) Suppose that condition (iii) holds. Let \(B_1 \) be a Carleson-Newman Blaschke product of order \(m \) in \(I \) satisfying \(\text{ord}(B_1, x) = \text{ord}(I, x) \) for every \(x \in Z(I) \). Let \(\varphi_1, \varphi_2, \ldots, \varphi_m \) be interpolating Blaschke products satisfying \(B_1 = \prod_{j=1}^m \varphi_j \). For each \(1 \leq j \leq m \), let \(E_j = Z(I) \cap Z(\varphi_j) \). Since \(Z(I) \) is a \(G_\delta \)-set, \(E_j \) is a closed \(G_\delta \)-set. By Lemma \ref{2.13}, there is an interpolating Blaschke product \(b_j \) such that \(Z(B_1) \cap Z(b_j) = E_j \). Let \(B_2 = \prod_{j=1}^m b_j \). For any \(x \in Z(I) \), we have

\[
\text{ord}(B_2, x) = \sum_{j=1}^m \text{ord}(b_j, x) = \# \{ j : x \in E_j, 1 \leq j \leq m \} = \text{ord}(B_1, x) \geq \text{ord}(I, x).
\]

By Theorem A, we have \(B_2 \in I \). We also have

\[
Z(B_1) \cap Z(B_2) = Z(B_1) \cap \bigcup_{j=1}^m Z(b_j) = \bigcup_{j=1}^m E_j = Z(I) \cap Z(B_1) = Z(I).
\]

Let \(J = I[B_1, B_2] \). Then \(Z(J) = Z(I) \) and \(\text{ord}(J, x) = \text{ord}(I, x) \) for every \(x \in Z(I) \).

By Theorem A again, we have \(J = I \).

(iv) \(\Rightarrow \) (i) is trivial. \hfill \square
In the following example, we shall show that there exist compact \(\rho \)-separated \(G_\delta \)-subsets \(E_1 \) and \(E_2 \) of \(G \) such that the ideal \(I(E_1) \cap I(E_2) \) is not countably generated.

Example 2.14. Let \(\{\theta_k\}_k \) be a sequence of numbers such that \(0 < \theta_{k+1} < \theta_k < 1 \) and \(\theta_k \to 0 \) as \(k \to \infty \). It is known that there is an interpolating Blaschke product \(B_1 \) with zeros \(\{z_n\}_n \) in \(\mathbb{D} \) such that

\[
\left\{ z_n \right\}_n^c \setminus \left\{ z_n \right\}_n = \{ e^{i\theta_k} : k \geq 1 \} \cup \{1\},
\]

where \(\left\{ z_n \right\}_n^c \) is the closure of \(\{z_n\}_n \) in \(\mathbb{C} \). Let \(\mathbb{N} \) be the set of positive integers. We may divide \(\mathbb{N} \) as \(\mathbb{N} = \bigcup_{k=1}^{\infty} N_k \) such that \(N_k \cap N_j = \emptyset \) for \(k \neq j \) and

\[
\left\{ z_n : n \in N_k \right\}_n^c \setminus \left\{ z_n : n \in N_k \right\} = \{ e^{i\theta_k} \}, \quad k \in \mathbb{N}.
\]

Let \(b_k \) be the subproduct of \(B_1 \) with zeros \(\{z_n : n \in N_k\} \). Then \(B_1 = \prod_{k=1}^{\infty} b_k \).

Let \(\{\varepsilon_k\}_k \) be a sequence of numbers such that \(0 < \varepsilon_k < 1 \) and \(\varepsilon_k \to 0 \) as \(k \to \infty \).

Let \(q_k(z) = (b_k(z) - \varepsilon_k)/(1 - \varepsilon_kb_k(z)) \).

Taking smaller \(\varepsilon_k \), we may assume that \(B_2 := \prod_{k=1}^{\infty} q_k \) is an interpolating Blaschke product and

\[
\left(\bigcup_{k=1}^{\infty} Z(b_k) \right) \cap \left(\bigcup_{k=1}^{\infty} Z(q_k) \right) = \emptyset.
\]

Let

\[
E_1 = Z(B_1) \setminus \mathbb{D} \quad \text{and} \quad E_2 = Z(B_2) \setminus \mathbb{D}.
\]

Then \(E_1, E_2 \) are compact \(\rho \)-separated \(G_\delta \)-subsets of \(G \),

\[
E_1 = \left(\bigcup_{k=1}^{\infty} (Z(b_k) \setminus \mathbb{D}) \right) \cup \left(E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k) \right)
\]

and

\[
E_2 = \left(\bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D}) \right) \cup \left(E_2 \setminus \bigcup_{k=1}^{\infty} Z(q_k) \right).
\]

By Lemma 2.3, \(I(E_1) \) and \(I(E_2) \) are countably generated closed ideals in \(H^\infty \). Let \(I = I(E_1) \cap I(E_2) \). Then \(I = I(E_1 \cup E_2) \). By the construction, we may check that

\[
E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k) = E_2 \setminus \bigcup_{k=1}^{\infty} Z(q_k)
\]

and

\[
\bigcup_{k=1}^{\infty} (Z(b_k) \setminus \mathbb{D}) \setminus \bigcup_{k=1}^{\infty} Z(b_k) = \bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D}) \setminus \bigcup_{k=1}^{\infty} Z(q_k)
\]

\[
\subset E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k).
\]

Let \(\Omega \) be the set of all subproducts \(q \) of \(B_2 \) satisfying

\[
\bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D}) \subset Z(q).
\]
Then we have $B_1q \in I$ for every $q \in \Omega$ and

$$\bigcap_{q \in \Omega} Z(q) = \bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D}).$$

By this fact, we have

$$Z_2(I) = \bigcup_{k=1}^{\infty} (Z(b_k) \setminus \mathbb{D}) \setminus \bigcup_{k=1}^{\infty} Z(b_k) = \bigcup_{k=1}^{\infty} Z(b_k) \setminus \bigcup_{k=1}^{\infty} Z(b_k),$$

and $Z_2(I)$ is not a G_δ-set (see Example 2.9 in [12]). By Lemma 2.3, I is not countably generated. We note that $I = I(E_1) \otimes I(E_2 \setminus E_1)$. \hfill \Box

REFERENCES