Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The residual Eisenstein cohomology of $Sp_{4}$ over a totally real number field
HTML articles powered by AMS MathViewer

by Neven Grbac and Harald Grobner PDF
Trans. Amer. Math. Soc. 365 (2013), 5199-5235 Request permission

Abstract:

Let $G=Sp_4/k$ be the $k$-split symplectic group of $k$-rank 2, where $k$ is a totally real number field. In this paper we compute the Eisenstein cohomology of $G$ with respect to any finite–dimensional, irreducible, $k$-rational representation $E$ of $G_\infty =R_{k/\mathbb {Q}}G(\mathbb {R})$, where $R_{k/\mathbb {Q}}$ denotes the restriction of scalars from $k$ to $\mathbb {Q}$. This approach is based on the work of Schwermer regarding the Eisenstein cohomology for $Sp_4/\mathbb {Q}$, Kim’s description of the residual spectrum of $Sp_4$, and the Franke filtration of the space of automorphic forms. In fact, taking the representation theoretic point of view, we write, for the group $G$, the Franke filtration with respect to the cuspidal support, and give a precise description of the filtration quotients in terms of induced representations. This is then used as a prerequisite for the explicit computation of the Eisenstein cohomology. The special focus is on the residual Eisenstein cohomology. Under a certain compatibility condition for the coefficient system $E$ and the cuspidal support, we prove the existence of non–trivial residual Eisenstein cohomology classes, which are not square–integrable, that is, represented by a non–square–integrable residue of an Eisenstein series.
References
  • A. Borel, Regularization theorems in Lie algebra cohomology. Applications, Duke Math. J. 50 (1983), no. 3, 605–623. MR 714820
  • Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496
  • A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR 546598
  • A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
  • Claude Chevalley, Deux théorèmes d’arithmétique, J. Math. Soc. Japan 3 (1951), 36–44 (French). MR 44570, DOI 10.2969/jmsj/00310036
  • Jens Franke, Harmonic analysis in weighted $L_2$-spaces, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 2, 181–279 (English, with English and French summaries). MR 1603257, DOI 10.1016/S0012-9593(98)80015-3
  • Jens Franke, A topological model for some summand of the Eisenstein cohomology of congruence subgroups, Eisenstein series and applications, Progr. Math., vol. 258, Birkhäuser Boston, Boston, MA, 2008, pp. 27–85. MR 2402680, DOI 10.1007/978-0-8176-4639-4_{2}
  • Jens Franke and Joachim Schwermer, A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann. 311 (1998), no. 4, 765–790. MR 1637980, DOI 10.1007/s002080050208
  • G. Harder, Eisenstein cohomology of arithmetic groups. The case $\textrm {GL}_2$, Invent. Math. 89 (1987), no. 1, 37–118. MR 892187, DOI 10.1007/BF01404673
  • Günter Harder, Eisensteinkohomologie und die Konstruktion gemischter Motive, Lecture Notes in Mathematics, vol. 1562, Springer-Verlag, Berlin, 1993 (German). MR 1285354, DOI 10.1007/BFb0090305
  • G. Harder, On the cohomology of $SL(2,O)$, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 139–150. MR 0425019
  • G. Harder, On the cohomology of discrete arithmetically defined groups, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 129–160. MR 0425018
  • Günter Harder, Some results on the Eisenstein cohomology of arithmetic subgroups of $\textrm {GL}_n$, Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, 1989) Lecture Notes in Math., vol. 1447, Springer, Berlin, 1990, pp. 85–153. MR 1082964, DOI 10.1007/BFb0085728
  • H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
  • A. Kewenig, T. Rieband, Geisterklassen im Bild der Borelabbildung für symplektische und orthogonale Gruppen, Diplomarbeit, Mathematisches Institut der Rheinisch Friedrich–Wilhelms–Universität Bonn, Bonn, 1997 (unpublished)
  • Henry H. Kim, The residual spectrum of $\textrm {Sp}_4$, Compositio Math. 99 (1995), no. 2, 129–151. MR 1351833
  • Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181
  • Jian-Shu Li and Joachim Schwermer, On the Eisenstein cohomology of arithmetic groups, Duke Math. J. 123 (2004), no. 1, 141–169. MR 2060025, DOI 10.1215/S0012-7094-04-12315-2
  • C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995. Une paraphrase de l’Écriture [A paraphrase of Scripture]. MR 1361168, DOI 10.1017/CBO9780511470905
  • Takayuki Oda and Joachim Schwermer, Mixed Hodge structures and automorphic forms for Siegel modular varieties of degree two, Math. Ann. 286 (1990), no. 1-3, 481–509. MR 1032942, DOI 10.1007/BF01453584
  • Dinakar Ramakrishnan, Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $\textrm {SL}(2)$, Ann. of Math. (2) 152 (2000), no. 1, 45–111. MR 1792292, DOI 10.2307/2661379
  • Joachim Schwermer, Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lecture Notes in Mathematics, vol. 988, Springer-Verlag, Berlin, 1983 (German). MR 822473, DOI 10.1007/BFb0070268
  • Joachim Schwermer, On arithmetic quotients of the Siegel upper half space of degree two, Compositio Math. 58 (1986), no. 2, 233–258. MR 844411
  • Joachim Schwermer, On Euler products and residual Eisenstein cohomology classes for Siegel modular varieties, Forum Math. 7 (1995), no. 1, 1–28. MR 1307953, DOI 10.1515/form.1995.7.1
  • Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. With the collaboration of Willem Kuyk and John Labute. MR 1043865
Similar Articles
Additional Information
  • Neven Grbac
  • Affiliation: Department of Mathematics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
  • Email: neven.grbac@math.uniri.hr
  • Harald Grobner
  • Affiliation: Fakultät für Mathematik, University of Vienna, Nordbergstrasse 15, A-1090 Wien, Austria
  • Email: harald.grobner@univie.ac.at
  • Received by editor(s): September 15, 2010
  • Received by editor(s) in revised form: September 26, 2011, January 20, 2012, and January 24, 2012
  • Published electronically: March 12, 2013
  • © Copyright 2013 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 365 (2013), 5199-5235
  • MSC (2010): Primary 11F75; Secondary 11F70, 11F55, 22E55
  • DOI: https://doi.org/10.1090/S0002-9947-2013-05796-0
  • MathSciNet review: 3074371