Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Non-autonomous Morse-decomposition and Lyapunov functions for gradient-like processes


Authors: E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa
Journal: Trans. Amer. Math. Soc. 365 (2013), 5277-5312
MSC (2010): Primary 37B25, 37B35; Secondary 37B55, 35B40, 35B41
DOI: https://doi.org/10.1090/S0002-9947-2013-05810-2
Published electronically: April 1, 2013
MathSciNet review: 3074374
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define (time dependent) Morse-decompositions for non-autonomous evolution processes (non-autonomous dynamical systems) and prove that a non-autonomous gradient-like evolution process possesses a Morse-decomposition on the associated pullback attractor. We also prove the existence of an associated Lyapunov function which describes the gradient behavior of the system. Finally, we apply these abstract results to non-autonomous perturbations of autonomous gradient-like evolution processes (semigroups or autonomous dynamical systems).


References [Enhancements On Off] (What's this?)

  • 1. E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J.A. Langa, Stability of gradient semigroups under perturbation, Nonlinearity 24 (2011), 2099-2117. MR 2805595
  • 2. E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J.A. Langa, Continuity of Lyapunov functions and energy level for a generalized gradient system, Topological Methods in Nonlinear Analysis 39 (2012), 57-82. MR 2934334
  • 3. A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations, Studies in Mathematics and its Applications 25, North-Holland Publishing Co., Amsterdam (1992). MR 1156492 (93d:58090)
  • 4. T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, A gradient-like non-autonomous evolution processes, International Journal of Bifurcation and Chaos 20 (9) (2010), 2751-2760. MR 2738731 (2011i:37108)
  • 5. A. N. Carvalho and J. A. Langa, An extension of the concept of gradient processs which is stable under perturbation, J. Differential Equations 246 (2009), 2646-2668. MR 2503016 (2010a:37159)
  • 6. A. N. Carvalho, J. A. Langa, J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Analysis 71 (2009), 1812-1824. MR 2524394 (2010f:37140)
  • 7. A. N. Carvalho, J. A. Langa, J. C. Robinson, A. Suárez, Characterization of non-autonomous attractors of a perturbed gradientsystem, J. Differential Equations 236 (2007) 570-603. MR 2322025 (2008e:37075)
  • 8. C. Conley, Isolated invariant sets and the Morse index. CBMS Regional Conference Series in Mathematics, 38, American Mathematical Society, Providence, R.I. (1978). MR 511133 (80c:58009)
  • 9. J. K. Hale Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs Number 25 (American Mathematical Society, Providence, RI) (1988). MR 941371 (89g:58059)
  • 10. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin (1981). MR 610244 (83j:35084)
  • 11. M. Hurley, Chain recurrence, semiflows and gradients, J. Dyn. Diff. Equations 7 (1995), 437-456. MR 1348735 (96k:58190)
  • 12. P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Sytems, Mathematical Surveys and Monographs, AMS 2011. MR 2808288
  • 13. O. A. Ladyzhenskaya, Attractors for semigropus and Evolution Equations, Cambridge University Press, Cambridge (1991). MR 1133627 (92k:58040)
  • 14. Z. Liu, The random case of Conley's theorem: III. Random semiflow case and Morse decomposition, Nonlinearity 20 (2007), 2773-2791. MR 2368325 (2008m:37088)
  • 15. K. Mischaikow, H. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrent and Lyapunov functions, Trans. Amer. Math. Soc. 347 (5) 1669-1685 (1995). MR 1290727 (95h:34063)
  • 16. D. E. Norton, The fundamental theorem of dynamical systems, Comment. Math., Univ. Carolinae 36 (3) (1995), 585-597. MR 1364499 (97a:58110)
  • 17. M. Patrão, Morse decomposition of semiflows on topological spaces, J. Dyn. Diff. Equations 19 (1) (2007), 181-198. MR 2279951 (2007m:37033)
  • 18. M. Patrão and Luiz A.B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dyn. Diff. Equations 19 (1) (2007), 155-180. MR 2279950 (2007m:37032)
  • 19. M. Rasmussen, Morse decomopsitions of nonautonomous dynamical systems, Trans. Amer. Math. Soc. 359 (10) (2007), 5091-5115. MR 2320661 (2009a:34086)
  • 20. K. P. Rybakowski, The homotopy index and partial differential equations, Universitext, Springer-Verlag (1987). MR 910097 (89d:58025)
  • 21. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Berlin (1988; second edition 1996). MR 953967 (89m:58056)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37B25, 37B35, 37B55, 35B40, 35B41

Retrieve articles in all journals with MSC (2010): 37B25, 37B35, 37B55, 35B40, 35B41


Additional Information

E. R. Aragão-Costa
Affiliation: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
Email: ritis@icmc.usp.br

T. Caraballo
Affiliation: Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla Spain
Email: caraball@us.es

A. N. Carvalho
Affiliation: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
Email: andcarva@icmc.usp.br

J. A. Langa
Affiliation: Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla Spain
Email: langa@us.es

DOI: https://doi.org/10.1090/S0002-9947-2013-05810-2
Keywords: Non-autonomous Morse decomposition, Lyapunov functions for non-autonomous dynamical systems, robustness of dynamical structures
Received by editor(s): April 8, 2011
Received by editor(s) in revised form: September 21, 2011, and February 3, 2012
Published electronically: April 1, 2013
Additional Notes: The first author was partially supported by CAPES/DGU 267/2008 and FAPESP 2008/50248-0, Brazil
The second author was partially supported by FEDER and Ministerio de Ciencia e Innovación grant # MTM2008-0088, # MTM2011-22411, PBH2006-0003-PC, and Junta de Andalucía grants # P07-FQM-02468, # FQM314 and HF2008-0039, Spain
The third author was partially supported by CNPq 302022/2008-2, CAPES/DGU 267/2008 and FAPESP 2008/55516-3, Brazil and Junta de Andalucía grant # P07-FQM-02468
The fourth author was partially supported by FEDER and Ministerio de Ciencia e Innovación grants # MTM2008-0088, # MTM2011-22411, # PBH2006-0003-PC, and Junta de Andalucía grants # P07-FQM-02468, # FQM314 and HF2008-0039, Spain
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society