The monotonicity of the ratio of two Abelian integrals

Authors:
Changjian Liu and Dongmei Xiao

Journal:
Trans. Amer. Math. Soc. **365** (2013), 5525-5544

MSC (2010):
Primary 34C07, 34C08; Secondary 37G15

DOI:
https://doi.org/10.1090/S0002-9947-2013-05934-X

Published electronically:
May 10, 2013

MathSciNet review:
3074381

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the monotonicity of the ratio of two Abelian integrals

**1.**V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, 1983. MR**695786 (84d:58023)****2.**V. I. Arnold,*Ten Problems, in: Theory of singularities and its applications*, Advance in Soviet Mathematics,**1**(1990), 1-8. MR**1089668 (91k:58001)****3.**A. Atabaigi and H.Z. Zangeneh,*Bifurcation of limit cycles in small perturbations of a class of hyperelliptic Hamiltonian systems of degree with a cusp*, J. Appl. Anal. Comp.,**1**(2011), 299-313.**4.**G. Binyamini, D. Novikov and S. Yakovenko,*On the number of zeros of Abelian integrals*, Invent. Math.,**181**(2010), 227-289. MR**2657426 (2011m:34089)****5.**R. I. Bogdanov,*Versal deformation of a singularity of a vector field on the plane in case of zero eigenvalues*, Selecta Math. Soviet.,**1**(1981), 389-421.**6.**F. Dumortier and C. Li,*Perturbations from an elliptic Hamiltonian of degree four I, Saddle loop and two saddle cycle*, J. Diff. Eqns.,**176**(2001), 114-157. MR**1861185 (2002h:34061)****7.**F. Dumortier and C. Li,*Perturbations from an elliptic Hamiltonian of degree four II, Cuspidal loop*, J. Diff. Eqns.,**175**(2001), 209-243. MR**1855970 (2002h:34060)****8.**F. Dumortier and C. Li,*Perturbations from an elliptic Hamiltonian of degree four III, Global centre*, J. Diff. Eqns.,**188**(2001), 473-511. MR**1954291 (2003j:34046a)****9.**F. Dumortier and C. Li,*Perturbation from an elliptic Hamiltonian of degree four IV. Figure eight-loop*, J. Diff. Eqns.,**188**(2003), 512-554. MR**1954292 (2003j:34046b)****10.**L. Gavrilov and I.D. Iliev,*Completle hyperelliptic integrals of the first kind and their non-oscillation*, Trans. Amer. Math. Soc.,**356**(2003), 1185-1207. MR**2021617 (2004i:34077)****11.**M. Grau, F. Mañosas and J. Villadelprat,*A Chebyshev criterion for Abelian integrals*, Trans. Amer. Math. Soc.,**363**(2011), 109-129. MR**2719674 (2011j:34096)****12.**R. Kazemi, H.Z. Zangeneh and A. Atabaigi,*On the number of limit cycles in small perturbations of a class of hyperelliptic Hamiltonian systems*, Nonlinear Analysis: Theory, Methods Appl.,**76**(2012), 574-587.**13.**C. Li,*Abelian Integrals and Limit Cycles*, Qual. Theory Dyn. Syst.,**11**(2012), 111-128. MR**2902727****14.**C. Li and Z. Zhang,*A criterion for determining the monotonocity of the ratio of two Abelian integrals*, J. Diff. Eqns.,**124**(1996), 407-424. MR**1370149 (96i:34057)****15.**J. Li, Two results on Lienard equations, Ph.D. Thesis, Peking University, 1998.**16.**C. Liu,*Estimate of the Number of Zeros of Abelian Integral for Elliptic Hamiltonian with Figure Eight-Loop*, Nonlinearity,**16**(2003), 1151-1163. MR**1975800 (2003m:34077)****17.**D. Novikov and S. Yakovenko,*Tangential Hilbert Problem for perturbations of Hyperelliptic Hamiltonian Systems*, Electron. Announc. Amer. Math. Soc.,**5**(1999), 55-65. MR**1679454 (2000a:34065)****18.**G. S. Petrov,*Elliptic integrals and their nonoscillation (Russian)*, Funct. Anal. Appl.,**20**(1986), no. 1, 46-49. MR**831048 (87f:58031)****19.**G. S. Petrov,*Complex zeros of an elliptic integral*, Func. Anal. Appl.,**23**(1989), 88-89. MR**1011373 (90m:33002)****20.**G. S. Petrov,*Nonoscillation of elliptic integrals*, Func. Anal. Appl.,**24**(1990), 205-210. MR**1082030 (92c:33036)****21.**G. S. Petrov,*On the nonoscillation of elliptic integrals*, Funct. Anal. Appl.,**31**(1997), 262-265. MR**1608896 (99a:34087)****22.**R. Roussarie,*On the number of limit cycles which appear by separatrix loop of planar vector fields*, Bol. Soc. Bra. Math.,**17**(1986), 67-101. MR**901596 (88i:34061)****23.**D. Shang and T. Zhang,*Bifurcations of a cubic system perturbed by degree five*, Acta Math. Sci. Ser. B Engl. Ed.,**29**(2009), 11-24. MR**2494080 (2010b:34064)****24.**J. Wang and D. Xiao,*On the number of limit cycles in small perturbations of a class of hyperelliptic Hamiltonian systems with one nilpotent saddle*, J. Diff. Equa.,**250**(2011), 2227-2243. MR**2763571 (2012c:34087)****25.**T. Zhang, M. Tadé and Y. Tian,*On the zeros of the Abelian integrals for a class of Liénard systems*, Phys. Lett. A,**358**(2006), 262-274. MR**2253504 (2007g:34063)****26.**T. Zhang, Y. Tian and M. Tadé,*On the number of zeros of the abelian integrals for a class of perturbed Liénard systems*, Internat. J. Bifur. Chaos Appl. Sci. Engrg.,**17**(2007), 3281-3287. MR**2372300 (2008k:34130)****27.**Y. Zhao and Zhifen Zhang,*Linear estimate of the number of zeros of abelian integrals for a kind of quartic hamiltonians*, J. Diff. Equa.,**155**(1999), 73-88. MR**1693214 (2000g:34052)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
34C07,
34C08,
37G15

Retrieve articles in all journals with MSC (2010): 34C07, 34C08, 37G15

Additional Information

**Changjian Liu**

Affiliation:
School of Mathematics, Soochow University, Suzhou 215006, People’s Republic of China

Email:
liucj@suda.edu.cn

**Dongmei Xiao**

Affiliation:
Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

Email:
xiaodm@sjtu.edu.cn

DOI:
https://doi.org/10.1090/S0002-9947-2013-05934-X

Keywords:
Abelian integral,
monotonicity,
hyperelliptic Hamiltonian

Received by editor(s):
April 1, 2012

Published electronically:
May 10, 2013

Additional Notes:
The first author was partially supported by the NSFC grant (No. 10901117) and pre-research of Soochow University

The second author was the corresponding author and was partially supported by the NSFC grants (No. 10831003 and No. 10925102) and the Program of Shanghai Subject Chief Scientists (No. 10XD1406200)

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.