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RECOVERY OF A SOURCE TERM OR A SPEED

WITH ONE MEASUREMENT AND APPLICATIONS

PLAMEN STEFANOV AND GUNTHER UHLMANN

Abstract. We study the problem of recovery of the source a(t, x)F (x) in the
wave equation in anisotropic medium with a known so that a(0, x) �= 0, with
a single measurement. We use Carleman estimates combined with geometric
arguments and give sharp conditions for uniqueness. We also study the non-
linear problem of recovery of the sound speed in the equation utt−c2(x)Δu = 0
with one measurement. We give sharp conditions for stability as well. An
application to thermoacoustic tomography is also presented.

1. Introduction

The purpose of this paper is to give sharp conditions for the recovery of a source
term in the wave equation in anisotropic media modeled by a Riemannian metric by
a single boundary measurement. In the process, we give a more geometric treatment
of the problem. This linear problem appears as a linearization and actually, as the
full non-linear version, of the problem of recovery of a sound speed, given the
source. It has applications to thermoacoustic tomography. We are also inspired by
the related works [7, 8, 9], [11, Theorem 8.2.2]. The method in these papers uses
Carleman estimates for hyperbolic inverse problems that originate in the work [2],
where the case of the wave equation with a potential with non-zero initial data is
considered.

The main problem that we have in mind is the following. Let u solve

(1)

⎧⎨
⎩

(∂2
t − c2Δ)u = 0 in (0, T )×Rn,

u|t=0 = f,
∂tu|t=0 = 0,

where c = c(x) > 0, and T > 0 is fixed. Let c = 1 outside some domain Ω with
a smooth strictly convex boundary. Given f , and u restricted to [0, T ] × ∂Ω, is it
possible to reconstruct the speed c? Ideally, we want to do this with data on a
part of ∂Ω as well. Next, assuming that we can, how stable is this? Clearly, some
conditions on f are needed since when f = 0, for example, we get no information
about c. This inverse problem is clearly non-linear.
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If we have two speeds c and c̃, then w = ũ− u solves

(2)

⎧⎨
⎩

(∂2
t − c2Δ)w = a(t, x)F (x) in (0, T )×Rn,

w|t=0 = 0,
∂tw|t=0 = 0,

with

(3) F := c̃2 − c2, a = Δũ.

We consider the more general linear problem of recovery of a function F , given a,
and w restricted to [0, T ] × ∂Ω, or on a part of it. Again, some condition on a is
needed since when a = 0, for example, F cannot be recovered. We actually replace
c2Δ in (2) by the Laplace-Beltrami operator Δg related to some metric, plus lower
order terms.

Similar problems but for the recovery of a potential or the term p(x) in ∇·p∇ are
studied in [17, 7, 8, 9]. A general abstract theorem of this type is presented in [11,
Theorem 8.2.2]. In [9] and [11], the principal part of the wave equation has variable
coefficients, thus the geometry is non-Euclidean. This requires some assumptions
on the speed or the metric. The method of the proof is to use Carleman estimates,
and the assumptions are needed to satisfy the pseudo-convexity condition. Those
assumptions are not sharp however. In fact, the proofs are essentially “Euclidean”,
and roughly speaking, the conditions on the speed or on the metric require that
the proof still works under an Euclidean treatment. Also, one global pseudo-convex
function is used. One of the goals of this work is to formulate such conditions in
a geometric way and, in particular, to obtain a sharper one, thus extending the
results to a larger class of speeds/metrics, and also prove local results.

There are many works on related problems, including boundary control, for
example, [1, 15, 30, 29]. There the conditions on the metric are more geometric,
requiring existence of a global convex function, or a somewhat general condition of
existence of a global vector field with certain properties. The proofs are still based
on Carleman estimates, but the goal is to recover non-trivial initial conditions,
assuming, say, a Neumann boundary condition, and measuring Dirichlet data on a
part of ∂Ω. The conditions on T are formulated in terms of lower bounds of the
speed and are not sharp. The geometry of the rays in those problems however is
different from the application that we have in mind — there are reflections at the
boundary. On the other hand, the methods there could probably be adapted to the
problems studied in the works that we cited above.

The pseudo-convexity condition needed for the Carleman estimates that we use is
satisfied by assuming that the region where we prove unique continuation is foliated
by a continuous family Σs of strictly convex surfaces. In the case of data on a part
Γ of ∂Ω, we require those surfaces to intersect ∂Ω in Γ, which can be viewed as
propagation of uniqueness from ∂Ω to the interior along strictly convex surfaces.
In contrast to the other works in this direction, we are not trying to construct
one strongly pseudo-convex function. Instead, we prove unique continuation by
incremental steps, each time using a different strongly pseudo-convex function.

We now describe the results in the paper. We start in section 2 with the unique-
ness Theorem 2.1, that is a version of [11, Theorem 8.2.2]. The time interval is
(−T, T ), there is no initial condition for wt at t = 0, and we study the problem of
unique recovery of F in (2) given Cauchy data on a part of (−T, T )× ∂Ω. We view
this theorem more as a tool than a goal, and the requirement that the time interval
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is symmetric about t = 0 will be satisfied later by studying problems with solutions
that have even extensions in t, like (1). In the rest of that section we show two
ways to satisfy the convexity requirement. First, assuming ∂Ω is strictly convex,
we show in Theorem 2.2 that F = 0 in some collar neighborhood of ∂Ω of the kind
dist(x, ∂Ω) ≤ T � 1, as long as the surfaces dist(x, ∂Ω) = s, s ∈ [0, T ] are smooth
and still strictly convex. The second one is to show that F = 0 in a subset of Ω
that can be foliated by strictly convex surfaces starting from ones outside Ω; see
Theorem 2.3. This only requires Cauchy data on a part of ∂Ω, where those surfaces
intersect ∂Ω, and proves F = 0 in a subdomain. The condition on T is sharp. We
give a few examples.

In section 3 we study the non-linear problem of recovery of the speed c in (1)
and the linear one of recovery of the source F in (2) described above. The time
interval is (0, T ) now, but the initial condition ut = 0 for t = 0 in (1), and the
requirement that a in (2) has a sufficiently regular even extension in the t variable,
allow us to use the results in the previous section. In contrast to the boundary
control problems, in the thermoacoustic problem we are given the Dirichlet data on
(0, T )× ∂Ω or on a part of it, but no Neumann data. On the other hand, we know
that the solution extends for x �∈ Ω as a solution again, and the initial data at t = 0
is zero there. This allows us, in Lemma 3.1, to recover the Neumann data from the
Dirichlet one in case of data on the whole ∂Ω. Then we extend the solution in an
even way for t < 0 and apply the results in section 2. The main requirement is for
Ω to have a foliation of strictly convex surfaces and the time interval (0, T ) to be
sharp.

The partial data case, with observations on (0, T ) × Γ, where Γ ⊂ ∂Ω in the
thermoacoustic setting, is studied in Theorem 3.2. The main difficulty is the need
to recover the Neumann data there as well. Then one directly applies the results in
section 2. We show that one can recover F , respectively c, in some neighborhood of
Γ that might be smaller compared to the case of having Cauchy data on the whole
(0, T ) × Γ. There is a new “cone” condition that might shrink the domain where
we prove F = 0, or respectively c̃ = c.

At the end of section 3, we study the stability of the linear and non-linear
problems for (1) and (2), respectively. As a general principle, for stability, we need
to be able to detect all singularities; see (51). For the linear problem at least,
this is a necessary and sufficient condition for stability in any Sobolev spaces; see
[21]. The corresponding stability estimates are formulated in Theorems 3.4 and 3.5.
Lipschitz stability estimates for related problems were proven earlier in [17, 7, 8].

2. A uniqueness result for recovery of a source

with one measurement

Let Ω be a bounded domain in Rn with a smooth oriented boundary and let

(4) P = ∂2
t −Δg +

∑
j

bj∂xj + c

be a differential operator in Q := (−T, T )×Ω ⊂ Rn, where g is a smooth Riemann-
ian metric on Ω, and aj , b, c are smooth functions on Q̄.

The level surface Σ = {ψ = 0} of some smooth function ψ is called strongly
pseudo-convex w.r.t. the hyperbolic operator P , if

(i) Σ is non-characteristic, i.e., |ψt| �= |dxψ| when ψ = 0, and
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(ii) H2
pψ > 0 on T ∗Ω̄ \ 0 whenever ψ = p = Hpψ = 0,

where Hp is the Hamiltonian vector field of the principal symbol p = −λ2 + |ξ|2
of P , and λ is the dual variable to t; see, e.g., [27]. Here and below, | · | is the
norm in the metric g of a covector or a vector. The second condition says that Σ
is strictly convex w.r.t. the null bicharacteristics of p, when viewed from ψ > 0. In
other words, the tangent null bicharacteristics to Σ are curved towards ψ > 0.

The function φ with a non-degenerate differential and non-characteristic level
set φ = 0 is pseudo-convex if a condition stronger than (ii) is satisfied. We are
not going to formulate that condition; it would be enough for our purposes to
use the well-known fact that if Σ = {ψ = 0} as above is pseudo-convex, then for
μ � 1, φ = exp(μψ) − 1 is a pseudo-convex function, non-degenerate on Σ, and
Σ = {φ = 0}; moreover, {φ > 0} = {ψ > 0}. For details, we refer the reader to
[27].

Let φ be strongly pseudo-convex in Q̄ w.r.t. P . Then it is well known that for
all u ∈ C2

0 (Q),

(5) τ

∫
e2τφ

(
|ut|2 + |∇u|2 + τ2|u|2

)
dt dx ≤ C

∫
e2τφ|Pu|2 dt dx, τ > 1;

see [27, 11, 10].
To reformulate condition (ii) in the tangent bundle, recall that the metric g

provides a natural isomorphism between covectors and vectors by the formula Φ :
(x, ξ) 	→ (x, v), where ξi = gij(x)v

j in local coordinates, where v is a vector at x.
For any function ψ on T ∗Ω, one gets a function Φ∗ψ on TΩ. Let q = |ξ|2/2 be the
“x part” of p, rescaled for convenience. It is known that Hq = Φ∗GΦ∗, where G is
the generator of the geodesic flow. Also, the energy level q = 1/2 is pushed forward
to the unit sphere bundle SΩ.

We have Hp/2 = −λ∂t +Hq, therefore,

1

4
H2

pψ = (λ∂t −Hq)
2ψ.

We identify covectors with vectors by the map Φ, to get that condition (ii) in Q is
equivalent to

(6) ψ = 0, ψt −Gψ = 0 =⇒ (∂t −G)2ψ > 0 for (t, x) ∈ Q, |ξ| = 1,

and we use the fact that p = 0 implies λ2 = |ξ|2 as well as the homogeneity
properties of G w.r.t. ξ.

Let us look for ψ of the type

ψ = r2(x)− δt2 − p, 0 < δ < 1,

with p a parameter. Then, to satisfy (ii), it is enough to have

(7) G2(r2/2) > δ|ξ|2.
Since we eventually want to take the limit δ → 1 to get sharp results, we arrive at
the condition

(8) G2(r2/2) ≥ |ξ|2.
It is enough to have this inequality in the x-projection of Σ in Ω̄, as the first
condition in (6) indicates. Note that this guarantees (ii) only; we still have to
choose r so that (i) holds. The latter is equivalent to

(9) |d(r2/2)| �= δ|t| on Σ ∩ Q̄.
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Example 1. Let r(x) = |x− x0| in Rn with some fixed x0, then ψ = |x− x0|2 −
δt2 − p. Then

G2(r2/2) = (ξ · ∇x)
2|x− x0|2/2 = |ξ|2,

and (8) holds. Condition (9) is satisfied for p > 0 because |d(r2/2)|2 = |x− x0|2 =
δt2 + p > δ2t2. Then Σ is a hyperboloid of one sheet.

More generally, let r(x) = ρ(x, x0), where ρ is the distance in the metric g. This
is the function that has been used in the Riemannian case. It satisfies (7) for r � 1
only, in general. For metrics of negative curvature, there is no restriction; see [19].

In this paper, ∂/∂ν denotes the exterior normal derivative to ∂Ω.

Theorem 2.1. Let Q = (−T, T )× Ω, and

(10) ∂j
t a ∈ C(Q̄), j ≤ 2, F ∈ L2(Ω), and ∂j

t ∂
α
x u ∈ L2(Q), j ≤ 3, |α| ≤ 1.

Let u be a (non-unique) solution of

(11)

{
Pu = a(t, x)F (x) in (−T, T )× Ω,

u|t=0 = 0 in Ω.

Let φ be a strongly pseudo-convex function in Q̄. Let G ⊂ (−T, T )× ∂Ω be an open
set with

(12) φ < 0 on ∂Q \ G, and φ(t, ·) ≤ φ(0, ·) for |t| < T.

Let suppF ⊂ K, where K ⊂ Ω̄ is compact, and

(13) a(0, x) �= 0, ∀x ∈ K.

If

(14) u = ∂u/∂ν = 0 on G,

then

F = 0 in {x ∈ Ω; φ(0, x) > 0}.

Proof. We follow the proof of [11, Theorem 8.2.2]. Set Qε = Q ∩ {φ > ε}. Fix
ε > 0, let χ ∈ C∞ be such that χ = 1 in Qε, and suppχ ⊂ Q̄0. We will apply the
Carleman estimate (5) to ∂j

tχu, j = 0 and j = 2, by shrinking Q0 to Qε on the left.

Here we are using the fact that u has zero Cauchy data on G. Then ∂j
tχu can be

approximated by C∞
0 (Q) functions in the H2 norms; see also Lemma 2.1. We have

P∂j
tχu = ∂j

t (χPu+ [P, χ]u) = ∂j
t (χaF + [P, χ]u) ,

where the commutator [P, χ] is a differential operator of order 1. Since χ = 1 on
Qε, we get

τ

∫
Qε

e2τφ
(
τ2|u|2 + τ2|utt|2 + |uttt|2

)
dσ(15)

≤ C

⎛
⎝∫

Q

e2τφ|F |2 dσ +

∫
Q\Qε

e2τφ
2∑

j=0

∑
|α|≤1

|∂j
t ∂

α
t,xu|2 dσ

⎞
⎠

≤ C

∫
Q

e2τφ|F |2 dσ + Ce2τε,
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where dσ = dt dVol(x) is the natural measure on Q. We will estimate the first
term on the right-hand side above. From equation (11) and its initial condition,
utt(0, ·) = a(0, ·)F . By (13), |F | ≤ C|utt(0, ·)|. Using (12), we get

(16)

∫
Q

e2τφ|F |2 dσ ≤ 2C2T

∫
Ω

e2τφ(0,·)|utt(0, ·)|2 dVol(x).

This integral admits the estimate∫
Ω

e2τφ(0,·)|utt(0, ·)|2 dVol(x) = −
∫ T

0

∫
Ω

∂

∂s

(
e2τφ(s,·)|utt(s, ·)|2

)
dVol(x) ds

+

∫
Ω

e2τφ(T,·)|utt(T, ·)|2 dVol(x)

≤ C

∫
Q

e2τφ
(
τ |utt|2 + τ−1|uttt|2

)
dσ + C,

because φ(T, ·) ≤ 0, and by the Cauchy inequality. This inequality, together with
(16), estimate the integral of the first term on the right-hand side of (15). Therefore,

τ

∫
Qε

e2τφ
(
τ2|u|2 + τ2|utt|2 + |uttt|2

)
dσ

≤ C

(
τ−1

∫
Q

e2τφ
(
τ2|utt|2 + |uttt|2

)
dσ + e2τε

)
.

Split the integration on the right into Qε and Q \ Qε. For τ � 1, the integral
over Qε will be absorbed by the left-hand side. On Q \ Qε, we have e2τφ ≤ e2τε.
Therefore,

τ

∫
Qε

e2τφ|u|2 dσ ≤ Ce2τε, for τ � 1.

Thus, ∫
Qε

e2τ(φ−ε)|u|2 dσ ≤ C/τ, for τ � 1.

Since φ− ε ≥ 0 in Qε, letting τ → ∞, we get u = 0 in Qε. Since ε > 0 is arbitrary,
we get u = 0 in Q0. By (11), aF = 0 in Q0, and in particular, a(0, ·)F = 0 in
Q0 ∩ {t = 0} = {x ∈ Ω; φ(0, x) > 0}. By the ellipticity condition (13), F = 0 there
as well. This proves the theorem. �

The following lemma will allow us to apply the proof of the theorem to a larger
class of non-smooth boundaries.

Lemma 2.1. Let D ⊂ Rn be open, and assume that near each point x0 ∈ ∂D,
D is represented by y > 0 and z > 0, where y and z are functions with non-zero
differentials satisfying the following condition:

if {y = 0} and {z = 0} intersect, then {y = 0} \ {z = 0} is dense in {y = 0}.

Let u ∈ C2(D̄) have Cauchy data 0 on ∂D in the sense that extended as 0 outside D,
it still belongs to C2. Then u can be approximated by C2

0 (D) functions in H2(Rn).

Proof. Let χ ∈ C∞
0 (R) be such that χ = 1 near 0. Set locally, near x0 ∈ ∂D,

uε = (1− χ(y/ε))(1− χ(z/ε))u.
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Using a partition of unity, we define such uε ∈ C2
0 (D). We claim that uε → u in

H2(Rn), as ε → 0+. Take the second derivatives of u− uε to see that we need to
show that the following terms converge to 0 in L2(Rn):

ε−1χ′(y/ε)u, ε−2χ′′(y/ε)u, ε−2χ′(y/ε)χ′(z/ε)u,

where we used the fact that the derivatives of y and z are bounded. We do not
list terms involving lower powers of ε−1 and derivatives of u, for which analysis is
similar. Similarly, we will not analyze the zero and the first order derivatives of uε.
Since y/ε and z/ε are bounded on the support of χ′(y/ε) and χ′(z/ε), respectively,
we may replace the leading coefficient ε−1 in the first term by y−1, etc. Since u = 0
for z = 0, and dz �= 0, we have u = zu1, where u1 ∈ C1. Next, u1 = 0 for y = 0
at least when z �= 0. That set of y’s however is dense in {y = 0} by assumption.
By continuity, u1 = 0 for y = 0. Thus u1 = yu2 with u2 ∈ C0, therefore, u = zyu2.
Now, the proof of the lemma follows from the fact that χ′′(y/ε) tends to 0 in L2(Rn)
and this is also true if we replace χ′′ by χ′ or χ. �

Next we recall a unique continuation result due to Tataru [26]; see also [23,
Theorem 4]. Assume that a locally H1 function u solves the homogeneous wave
equation Pu = 0 (near the set indicated in (17) below) and vanishes in an open set
containing (−T, T )× {x0} for some x0 and T > 0. Then

(17) u(t, x) = 0 for |t|+ dist(x0, x) < T.

Based on that, one can show unique continuation of Cauchy data on R× ∂Ω to
their domain of influence; see, e.g., [12, Theorem 3.16].

Proposition 2.1. Let u ∈ H1 solve the homogeneous wave equation Pu = 0 in
[−T, T ] × Ω. Assume that u has Cauchy data zero on [−T, T ] × Γ, where Γ ⊂ ∂Ω
is open. Then u = 0 in the domain of influence {(t, x) ∈ [−T, T ]× Ω; dist(x,Γ) ≤
T − |t|}.

The next theorem in fact follows from Theorem 2.3 below, but its proof is simpler,
and it serves as a basis for the proof of Theorem 2.3. We refer to Figure 1 for an
illustration. Recall that in a Riemannian manifold, the (hyper) surface S with
a chosen local orientation given by a smooth normal unit vector field ν is called
strictly convex at x ∈ S if the second fundamental form II(v, w) = 〈∇vν, w〉 is
positive at x; see, e.g., [20, p. 112]. Since ∂Ω is oriented, it has a fixed choice of
ν(x).

Figure 1. Theorem 2.2
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Theorem 2.2. Assume that ∂Ω is strictly convex. Let T > 0 be such that xn :=
dist(x, ∂Ω) is a smooth function in Ω with non-zero differential for 0 ≤ xn ≤ T and
{xn = s}, 0 ≤ s < T are strictly convex surfaces. Let u solve (11) and the function
a satisfies (13) for 0 ≤ xn ≤ T . Also assume the regularity conditions (10). Then
if u has zero Cauchy data on (−T, T )× ∂Ω, we also have

(18) F (x) = 0 for x ∈ Ω, dist(x, ∂Ω) < T.

Proof. Let (x′, xn) be normal boundary coordinates near ∂Ω with s0 fixed. Here
xn is the signed distance to ∂Ω so that xn > 0 in Ω. The function xn is defined
in a small neighborhood of ∂Ω while x′ are local coordinates near some boundary
point. The metric g then takes the form

gαβ(x
′, xn)dxαdxβ + (dxn)2,

α, β ≤ n− 1. Given f(x), independent of the dual variable ξ, we have

(19) G2f =

(
ξi

∂

∂xi
− Γi

jkξ
jξk

∂

∂ξi

)
ξ�

∂

∂x�
f =

∂2f

∂xi∂xj
ξiξj − Γi

jkξ
jξk

∂f

∂xi
.

Now assume that f is a function of xn only. Then in the term involving Γi
jk, only

Γn
jk will remain. On the other hand, Γn

jk = − 1
2∂gjk/∂x

n is the second fundamental
form II > 0 of the level sets of xn, w.r.t. the chosen orientation, and it is zero when
either j = n or k = n; see, e.g., [20, p. 113].

Restrict (19) to ∂Ω = {xn = 0} to get

G2f
∣∣
xn=0

=
(
f ′′(xn)(ξn)2 − II(x′)(ξ′, ξ′)f ′(xn)

) ∣∣
xn=0

.

To satisfy (8) for f = f(xn), we need

(20) f ′′(0) ≥ 1, −f ′(0) ≥ R,

where 1/R is the minimum over ∂Ω of the smallest eigenvalue (principal curvature)
of the second fundamental form II. We can think of R as the largest curvature
radius of ∂Ω and, by assumption, 0 < R < ∞. Then f = r2/2 with the following
function satisfies (8):

r(x) = R− xn,

because then f := r2/2 = (R−xn)2/2 clearly satisfies (20). Therefore, the function

(21) ψp(t, x) := (R− xn)2 − δt2 − p

generates a strongly pseudo-convex φp, with the assumption that {ψp = 0} is non-
characteristic. Also, the last inequality in (12) holds. Note that in Example 1, if
∂Ω = {x; |x| = R0}, then xn = R0 − |x|, and one can choose R = R0. Then
ψp = |x|2− δt2− p, which is the phase function in the example. As in the example,
we can show that {ψp = 0} is non-characteristic for p > 0. In fact, we will work
locally near xn = t = 0, and p = R, and clearly, ψp is non-characteristic there.

Fix 0 < ε � 1, and let 0 < xn < ε. We restrict p to the interval (R− ε)2 ≤ p ≤
R2. This choice of the phase function corresponds to pseudo-convex surfaces given
by

(22) (R− xn)2 − δt2 = p, (R− ε)2 ≤ p ≤ R2, 0 ≤ xn ≤ ε < R.

In Rt × Ω̄x, this restricts t to |t| = O(
√
ε); see also (23) below. We will apply

Theorem 2.1 with the phase function φp := exp(μψp)− 1, μ � 1, with p as in (22).
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On G := (−T, T )× ∂Ω, we have ψp|xn=0 = R2 − δt2 − p. To have φp < 0 in ∂Q \ G,
we need ψp < 0 there, and therefore R2 − δT 2 < p for all p as in (22). Therefore, if

(23) T >
√
R2 − (R− ε)2 =

√
2εR +O(ε2),

which is always true when ε � 1, we can apply the theorem for δ < 1 close enough
to 1. Therefore, we get that if u has zero Cauchy data on (−T, T )× ∂Ω with T as
in (23), then F (x) = 0 for ψp(0, x) > 0 for any s as before, i.e., for 0 ≤ xn < ε.
Note that this does not prove the theorem yet, even when T is small enough so
that we can have equality in (23) with some ε satisfying the smallness requirements.
The reason is that we get F = 0 in a much smaller region: 0 ≤ xn ≤ ε instead of
0 ≤ xn ≤ T because for small ε, we have T ∼ √

ε � ε. Also, T � 1 when R is
large, i.e., when ∂Ω is close to a flat surface at some point and direction. In other
words, the price that we pay with T to push suppF by ε depends on the (largest)
radius of the curvature of ∂Ω, and this is not what we are trying to prove. We
will use this argument as an incremental step only, and will prove the theorem by
applying a finite number of such steps.

To get the sharp time T , not necessarily small, we notice that we just proved
that if u has zero Cauchy data on (−T, T )× ∂Ω with T as in (23) and ε � 1, then
F (x) = 0 for x ∈ Ω, dist(x, ∂Ω) < ε. Then Pu = 0 in the same domain and |t| < T ,
by (11). By unique continuation, see Proposition 2.1,

(24) u(t, x) = 0 for x ∈ Ω, dist(x, ∂Ω) + |t| < T , dist(x, ∂Ω) ≤ ε.

In particular,

(25) ∂α
x u(t, x) = 0 for x ∈ Ω, dist(x, ∂Ω) = ε, |t| < T − ε, |α| ≤ 1,

provided that T > ε, thus we have zero Cauchy data there.
Let ε̃ be the supremum of all ε for which the following statement holds: if u has

zero Cauchy data on (−T, T )×∂Ω, then F (x) = 0 when dist(x, ∂Ω) < ε. Then ε̃ has
that property as well. If ε̃ < T , then by the argument above, see (25), u has zero
Cauchy data on (−T + ε̃, T − ε̃) × ∂Ω. Then we can repeat the argument leading
to (24) to reduce supp f even further, by applying Theorem 2.1 to the domain
{x ∈ Ω, dist(x, ∂Ω) ≥ ε} which has a strict convex boundary by assumption. This
would contradict the choice of ε̃. Therefore, ε̃ = T . �

Recall that given two subsets A and B of a metric space, the distance dist(A,B)
is defined by

(26) dist(A,B) = sup(dist(a,B); a ∈ A).

This function is not symmetric in general, and its symmetrizer is called a Hausdorff
distance, defined as

distH(A,B) = max (dist(A,B), dist(B,A)) .

Let Ω1 � Ω be another domain with smooth boundary so that ∂Ω1 is given by
dist(x, ∂Ω) = ε � 1. Let Σs, s1 ≤ s ≤ s2 be a continuous family of compact
oriented surfaces in Ω1. By a continuous family, we mean a family such that the
Hausdorff distance distH(Σs,Σs0) tends to 0, as s → s0, ∀s0. Examples also include
surfaces that are not closed in Ω̄ but can be extended as closed ones in the larger
domain Ω1 with the extension being in Ω1 \ Ω̄. We assume that each Σs divides
Ω1 into two (open) connected parts: one, in the direction of the normal giving the
orientation on Σs, that we denote by Σint

s and the other one that contains ∂Ω1,
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that we denote by Σext
s . We refer to Figure 2 for an illustration. We also assume

that the orientation depends continuously on s, in the sense that for all s0 and x,
if x ∈ Σint

s for s = s0, then this is also true for s close enough to s0.

Figure 2. A typical example of the family Σs. The surfaces Σs

do not need to be closed, and the dashed parts show how they can
be extended to closed surfaces. For each Σs, Σ

int
s is the interior,

while Σext
s is the exterior of the surface.

Let Γ ⊂ ∂Ω be a relatively open subset of ∂Ω. Set

(27) G := {(t, x); x ∈ Γ, |t| < τ (x)} ,
where τ is a fixed continuous function on Γ. This corresponds to measurements
taken at each x ∈ Γ for the time interval |t| < τ (x). One special case is τ (x) ≡ T ,
for some T > 0; then G = (−T, T )× Γ.

Figure 3. An illustration to Theorem 2.3 and its proof. Left: the
family Σs. Right: the “inductive” step of the proof. The curve on
the right is Σs; the dashed one on the left is at distance ε from Σs.

Theorem 2.3. Let Ω1, G, and Σs, s1 ≤ s ≤ s2, be as above. Let u solve (11) and
have zero Cauchy data on G. Let the regularity conditions (10) and the ellipticity
condition (13) be satisfied on K := (

⋃
s1≤s≤s2

Σs) ∩ Ω̄. Assume that

(a) suppF ⊂ Σint
s1 ,

(b) Σs ∩ Ω̄ is strictly convex for any s,
(c) Σs ∩ (∂Ω \ Γ) = ∅ for any s.
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Also assume that

(28) for any x ∈ Σs ∩ Ω̄, there is y ∈ Γ so that τ (y) > dist(x, y).

Then

(29) suppF ∩ Σs = ∅, ∀s.

Proof. Extend F as zero outside Ω. Fix s ∈ [s1, s2], and assume that

(30) suppF ⊂ Σint
s .

By (28), for any x ∈ Σs ∩ Ω̄, τ (y) > dist(x, y) for some y ∈ Γ. By the unique
continuation statement of Proposition 2.1, u vanishes near that x for small |t|; and,
in particular, u has zero Cauchy data on (−δ, δ) × Σs ∩ Ω̄ for 0 ≤ δ � 1. By
assumption, this is also true on (−δ, δ)× Γ.

Let xn be a boundary normal coordinate to Σs positive in Σint
s . Let ψ(t, x) be

as in (21), and ε > 0 be as in the proof of Theorem 2.2. The function φ = exp(μφ),
μ � 1, is guaranteed to be pseudo-convex only for x in an O(ε) neighborhood of
Σs ∩ Ω̄, and for |t| ≤ δ = O(

√
ε), if ε � 1, by (b). We apply Lemma 2.1 to the set

D = (−δ, δ)× Σint
s ∩ Ω to conclude by (b) and (c), as in the proof of Theorem 2.1,

that F = 0 in some neighborhood of Σs ∩ Ω̄; see Figure 3.
Now let s0 be the supremum of all s ∈ [s1, s2] for which (30) holds. The latter set

is non-empty, by (a). By the continuity of s 	→ Σs, (30) holds for s = s0. Indeed,
assuming that (30) does not hold for s = s0, we can find 0 < ε � 1, so that (30)
does not hold for s0 − ε ≤ s ≤ s0. That contradicts the choice of s0 to be the least
upper bound. On the other hand, by what we proved above, s0 cannot be an upper
bound, unless s = s2. This completes the proof. �
Remark 2.1. The purpose of condition (28) is to guarantee that any point x where
we want to prove F (x) = 0 is reachable from Γ (from some point y) at a time not
exceeding τ (y). In other words, there is a “signal” (a unit speed curve) issued from
x that will reach the observation part Γ of ∂Ω at a time while we are still making
measurements there. By finite speed of propagation, it is a necessary condition as
well.

Remark 2.2. A sufficient but an easier to formulate condition to replace (28) is

(31) G = (−T, T )× Γ with T > max
s

dist(Σs ∩ Ω̄,Γ);

see (26). An even simpler sufficient condition is

(32) G = (−T, T )× Γ with T > dist(Ω,Γ).

2.1. Examples.

Example 2. Let Ω ⊂ R2 be a bounded domain, and let g be a metric on Ω̄.
Assume that ∂Ω is convex in the metric, and that there is x0 ∈ ∂Ω, so that all
geodesics issued from ∂Ω, pointing into Ω̄, exit Ω̄ after some fixed time. That
property does not depend on the way we extend g outside Ω̄. All simple (see [22]
for a definition) (Ω, g) have this property, and all non-trapping convex ones have it
too. We will show that in this case we can cover Ω̄ by a foliation of smooth surfaces
(curves, actually) Σs that are a small perturbation of the geodesics through x0.

Extend g in a small neighborhood Ω1 of Ω̄, and let y0 �∈ Ω̄ be close to x0 so
that the geodesics through y0 have the same property but in Ω1. Choose global
coordinates in the latter as normal coordinates centered at y0. In those coordinates,
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Figure 4. Example 2

the geodesics through y0 are the lines, i.e., they solve x′′ = 0. At each x, let J
be the rotation operator in the tangent space given by Jv = (−v2, v1), where we
used the standard index raising/lowering convention, and the vector Jv is identified
with the covector on the right-hand side. Given 0 < δ � 1, define the curves Σs

as solutions of x′′ = −δJx′. The parameter s measures the angle of the initial
direction at y0 with a fixed direction. Then Σs are strictly convex when viewed
from the side determined by the normal Jx′. In Figure 4, this is the upper side. We
can always extend the curves Σs to closed ones with the extension being outside
Ω. Assume now that u has zero Cauchy data. Then we can apply Theorem 2.3 to
conclude that F = 0 when T is appropriately chosen. A possible choice of T is the
diameter of Ω̄, given by max(dist(x, y); x, y ∈ Ω̄). To optimize T , we can consider
a similar family, with δ negative. In Figure 4, they are shown as dashed curves.
Then the “interior” and the “exterior” are reversed. The two families converge to
the set of the geodesics through y0, as |δ| → 0. Then the value for T is enough to
apply the theorem and can be obtained by finding a geodesic γ0 through y0 so that
maximum of the distances from γ0 ∩ Ω̄ to the upper and the lower side of ∂Ω is
maximized; then T is that value.

Let Ω be an ellipse, and let g be Euclidean. If y0 is one of the vertices on the
major (minor) axis, then γ0 is the major (minor) axis, and it is enough to take T
to be a half of the length of the major (minor) axis.

Example 3. Let Ω ⊂ R2 be as above. Assume that there exists a closed non-self-
intersecting geodesic γ0 of the metric g. Assume that the region between ∂Ω and
γ0 can be foliated by a continuous family of strictly convex curves Σs. Then suppF
is contained inside γ0, if T = dist(γext

0 , ∂Ω), where γext
0 is the exterior of γ0 in Ω.

Our analysis does not allow us to extend the equality F = 0 inside.

Example 4. Let Ω ⊂ R2 be diffeomorphic to a disk, and let Γ be a relatively open
connected part of ∂Ω. Fix a metric g in some neighborhood of Ω̄. We do not need
to assume that the whole ∂Ω is convex but we will assume that there is a continuous
family of geodesics, with endpoints outside Ω̄, covering the region between Γ and
the geodesic connecting the endpoints of Γ; see also Figure 2. In Figure 6, this is
the unshaded region. The latter assumption is fulfilled if for example one of those
points has the property that all geodesics issued from it, and pointed inside Ω,
leave the unshaded region after some fixed time. In particular, (Ω, g) being non-
trapping suffices. Then we can perturb those geodesics to curves that are convex
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Figure 5. Example 3

(bending to the shaded region), as in Example 2, to show that when T is chosen in
an appropriate way, suppF must be in the shaded region.

Figure 6. Example 4

A higher dimensional analog of this example would be Ω diffeomorphic to a ball
with Γ ⊂ ∂Ω diffeomorphic to a disk on ∂Ω. Then F = 0 in the region covered
by families of convex surfaces. For example, let Ω be the ellipsoid

∑
(xi)2/a2i = 1,

and let g be Euclidean. Let Γ = ∂Ω ∩ {x1 > C} with 0 < C < a1. Then F = 0 in
Ω∩ {x1 > C}, and it is enough to choose T = a1 −C; T may or may not be sharp,
depending on all aj and C.

3. A non-linear problem of recovery of a speed

with one measurement. Applications to thermoacoustics

In section 2, we showed that one can uniquely recover f when t varies over a
symmetric interval [−T, T ], and u|t=0 is known. No knowledge of ut|t=0 is required.
Now assume that t varies over the interval [0, T ], and a, u admit even extensions
for t ∈ [−T, T ] of regularity as in the preceding section. In particular, this means
that ut|t=0 = 0. In other words, u solves

(33)

⎧⎨
⎩

Pu = a(t, x)F (x) in (0, T )× Ω,
u|t=0 = 0 in Ω,
ut|t=0 = 0 in Ω,
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compare with (2). Then one has obvious corollaries of the results of the previous
section that we are not going to formulate. One can interpret those results as a
recovery of a source, given a. If a = 1, then one can differentiate the equation
above w.r.t. t and to reduce the problem to recovery of an initial condition for
the homogeneous wave equation, that is, the classical thermoacoustic problem of
recovering f given Λf , with a known speed; see (34) below.

3.1. The thermoacoustic model. Let u solve problem (1), where c = c(x) > 0
is smooth and T > 0 is fixed. Note that the wave equation is now solved in the
whole Rn.

Assume that f is supported in Ω̄, where Ω ⊂ Rn is some smooth bounded
domain. Also assume that c = 1 outside Ω. This is not an essential assumption; it
is enough for c to be known and fixed outside Ω. The measurements are modeled
by the operator

(34) Λf := u|[0,T ]×∂Ω.

The problem is to reconstruct the unknown c and f , if possible. We will now study
the case when f is known, and we want to reconstruct c.

This inverse problem models thermoacoustic and photoacoustic tomography,
where a microwave or a laser impulse is sent to a patient’s body and we measure
the generated acoustic wave outside the body. We refer to [3, 4, 5, 6, 13, 16, 23, 24],
and the references there, for some mathematical works in this direction.

3.2. Uniqueness results for the linear problem. Let (c, f), (c̃, f̃) be two pairs,
and let u, ũ be the corresponding solutions of (1). Then

(35)

⎧⎨
⎩

(∂2
t − c2Δ)(ũ− u) = (c̃2 − c2)Δũ in (0, T )×Rn,

(ũ− u)|t=0 = 0,
∂t(ũ− u)|t=0 = 0.

Then (
Λ̃− Λ

)
f = (ũ− u)

∣∣
[0,T ]×∂Ω

.

We have

(36) (δΛ)f :=
(
Λ̃− Λ

)
f = w

∣∣
[0,T ]×∂Ω

,

where w solves (2) with F and a as in (3). Then suppF ⊂ Ω̄, and given the reg-
ularity of c and c̃, we also have F = 0 on ∂Ω. The measurement (36) however
determines the Dirichlet data on [0, T ]×∂Ω only. The Neumann data can be recov-
ered from that however; see also [24, sec. 7] and Lemma 3.1 below. We emphasize
again that w solves the wave equation for x in the whole Rn, and this is what
allows us to recover the Neumann data.

We assume below that w solves the more general problem

(37)

⎧⎨
⎩

(∂2
t −Δg)w = a(t, x)F (x) in (0, T )×Rn,

w|t=0 = 0,
∂tw|t=0 = 0,

where g is a smooth Riemannian metric that is Euclidean outside Ω. In some of
the results below, we do not assume that F and a are given by (3).

We introduce the energy space associated with the wave equation below, to
be able to deal both with metrics and variables speeds. Write the metric g as
g = c−2g0, where c(x) > 0. In the thermoacoustic case, one usually takes g0 to be
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Euclidean. Let Δg0 be the Laplace-Beltrami operator as above but related to g0.
Modulo lower order terms, c2Δg0 and Δg coincide. Write P in the form

(38) P = ∂2
t −A, A = c2Δg0 + lower order terms,

compare with (4). Notice first that c2Δg0 is formally self-adjoint w.r.t. the measure
c−2dVol. Given a domain U , and a function u(t, x), define the energy

EU (t, u) =

∫
U

(
|∇xu|20 + c−2|ut|2

)
dVol0(x),

where |∇xu|0 is the norm in the metric g0, and dVol0 is the volume measure w.r.t.
g0 as well. In particular, we define the space HD(U) to be the completion of C∞

0 (U)
under the Dirichlet norm

(39) ‖f‖2HD
=

∫
U

|∇xu|20 dVol0(x).

It is easy to see that HD(U) ⊂ H1(U), if U is bounded with smooth boundary;
therefore, HD(U) is topologically equivalent to H1

0 (U). If U = Rn, this is true
for n ≥ 3 only. By the finite speed of propagation, the solution with compactly
supported Cauchy data always stays in H1 even when n = 2. The energy norm for
the Cauchy data [f1, f2], that we denote by ‖ · ‖H is then defined by

‖[f, f2]‖2H =

∫
U

(
|∇xf1|20 + c−2|f2|2

)
dVol0(x).

This defines the energy space

H(U) = HD(U)⊕ L2(U).

Here and below, L2(U) = L2(U ; c−2dVol0). Note also that

(40) ‖f‖2HD
= (−Af, f)L2 .

The wave equation then can be written as the system

(41) ut = Au, A =

(
0 I
A 0

)
,

where u = [u, ut] belongs to the energy space H. The operator A then extends nat-
urally to a skew-selfadjoint operator on H. We denote by U(t) the group exp(tA).
In this paper, we will deal with either U = Rn or U = Ω. In the latter case, the
definition of HD(U) reflects Dirichlet boundary conditions.

Next we will define the outgoing DN map. Given g ∈ C∞
0 ((0,∞) × ∂Ω), let w

solve the exterior mixed problem with c = 1:

(42)

⎧⎪⎪⎨
⎪⎪⎩

(∂2
t −Δ)v = 0 in (0, T )×Rn \ Ω̄,

v|[0,T ]×∂Ω = g,
v|t=0 = 0,

∂tv|t=0 = 0.

Then we set

Ng =
∂w

∂ν

∣∣∣
[0,T ]×∂Ω

.

By [14], for g ∈ H1
(0)([0, T ]× ∂Ω), we have [w,wt] ∈ C([0, T ); H(Ω)); therefore,

N : H1
(0)([0, T ]× ∂Ω) → C([0, T ]×H

1
2 (∂Ω))
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is continuous, where the subscript (0) indicates the closed subspace of functions
vanishing at t = 0. Note that the results in [14] require the domain to be bounded
but, by finite domain of dependence, we can remove that restriction in our case. We
also refer to [3, Proposition 2] for a sharp domain of dependence result for exterior
problems.

When F and a are given by (3), the next lemma follows directly from its version

[24, sec. 7] for Λf by subtracting Λ̃f and Λf .

Lemma 3.1. Let w solve (2) with F supported in Ω̄, and let t 	→ a(t, ·)F (·) ∈ L2(Ω)
be continuous. Assume that c = 1 outside Ω. Then for any T > 0, w|[0,T ]×∂Ω

determines uniquely the normal derivative of w on [0, T ]× ∂Ω as follows:

(43)
∂w

∂ν

∣∣∣
[0,T ]×∂Ω

= N
(
w|[0,T ]×∂Ω

)
.

Proof. Let v be the solution of (42) with g = w|[0,T ]×∂Ω. The latter is in

H1
(0)([0, T ] × ∂Ω). Let w be the solution of (2). Then v − w solves the unit speed

wave equation in [0, T ] × Rn \ Ω with zero Dirichlet data and zero initial data.
Therefore, v = w in [0, T ]×Rn \ Ω. �

With this in mind, we have the following version of Theorem 2.2 in this context.
Notice that in the two theorems below, we do not assume F and a to be given by
(3).

Theorem 3.1. Assume that ∂Ω is strictly convex, w solves (2) and the function a
satisfies the elliptic condition (13) in the closure of the set (44) below. Let a and w
admit even extensions satisfying (10). Let T > 0 be such that xn := dist(x, ∂Ω) is
a well-defined smooth function in Ω with non-zero differential; {xn = s}, 0 ≤ s < T
are strictly convex surfaces. Then if w = 0 on [0, T ]× ∂Ω, we also have

(44) F (x) = 0 for x ∈ Ω, dist(x, ∂Ω) < T.

Proof. We first apply Lemma 3.1 to conclude that the normal derivative of w van-
ishes on [0, T ]× ∂Ω as well. The assumptions of the theorem imply that a(t, x) can
be extended in an even way satisfying the assumptions of Theorem 2.2. Then w
admits an even extension, as a solution of the wave equation, and thus we apply
Theorem 2.2. �

Since recovery of F in (2) from w|[0,T ]×∂Ω is a linear problem, we also get unique-
ness for that problem in the set (44). We also get unique recovery of the speed c
in the region in (44). Those are in fact partial cases of Theorems 3.2 and 3.3.

The local data result, in the spirit of Theorem 2.3, is not so straightforward
because the recovery of the Neumann data is not so direct.

For any (t̂, x̂) ∈ R+ × ∂Ω, define the “cone”

(45) Ct̂,x̂ := {(t, x) ∈ R+ × ∂Ω; t+ dist0(x, x̂) ≤ t̂},

where for a, b in Rn \ Ω, dist0(a, b) is the infimum of the lengths of all smooth
curves lying in Rn \ Ω that connect a and b.

Theorem 3.2. Let Ω, Ω1, G and Σs be as in Theorem 2.3. Let w solve (2) and
let a, w have even extensions which satisfy (10) and (13) with K being the closure
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of the set in (46) below. Assume that w = 0 on G+ := G ∩ {t ≥ 0}. Then

(46) suppF ∩
{
x ∈ Ω ∩ (

⋃
s

Σs); ∃y ∈ Γ, Cdist(x,y),y ⊂ G+

}
= ∅.

Proof. Outside R × Ω, w, extended in an even way for t < 0, solves the wave
equation Pw = 0 with zero Cauchy data for t = 0 and zero Dirichlet data on
G; see (27). This does not allow us immediately to conclude that the Neumann
data vanishes there too. On the other hand, by the finite domain of dependence
result in [3], ∂w/∂ν = 0 near (t̂, x̂) ∈ G+, if the “cone” Ct̂,x̂ is contained in G+.

Fix such (t̂, x̂). We apply Theorem 2.3 with G replaced by Ct̂,x̂, extended in an

even way for t < 0. This cone is a set of the type G, see (27), with τ replaced
by τ̂ (x) = max(0, t̂− dist0(x, x̂)), well-defined on Γ. By Theorem 2.3, suppF does
not contain x ∈ Ω̄ ∩ (

⋃
s Σs) so that τ̂(y) > dist(x, y) for some y ∈ Γ. The latter

condition can be written as

(47) t̂− dist0(y, x̂) > dist(x, y) for some y ∈ Γ.

Now, choose x as in the second set in (46), and let y be the corresponding point
on Γ. Set t̂ = dist(x, y) + ε, x̂ = y. Then the cone condition Ct̂,x̂ ⊂ G+ is satisfied
for 0 < ε � 1 because it holds for ε = 0 by assumption, and Ct̂,x̂ is defined by
a non-strict inequality, while G is defined by a strict one. Therefore, condition
(47), that we just got to conclude F = 0 near x, is satisfied. This completes the
proof. �

Remark 3.1. In case of observations on the whole boundary, i.e., when Γ = ∂Ω,
with G = [0, T ]× ∂Ω, (46) implies F = 0 in the set dist(x, ∂Ω) ≤ T . In particular,

(48) T > dist(Ω, ∂Ω)

is sufficient to conclude F = 0; see also (32). This is in agreement with the results of
the previous section since one can recover the Neumann data easily by Lemma 3.1.

Example 5. Let g be Euclidean and let Ω be strictly convex. Let Γ = {xn > a}∩∂Ω
with some fixed a, and let Ωa = {xn > a} ∩ Ω. Then Ωa satisfies the foliation
condition. For any x ∈ Ω0, let y be the point on Γ with the same x′ coordinates,
where x′ = (x1, . . . , xn−1). Then |x − y| < dist0(y, ∂Ω \ Γ) because even when
x ∈ {xn = a} (then |x − y| = yn − a is maximized), the Euclidean distance from
y to {xn = a} minimizes the distance from y to that plane with the constraint
that we take it outside Ω. Then the “cone” C|x−y|,y is included in G+, if we choose
G = (−T, T )× Γ with T = dist(Γ, ∂Ω \ Γ); see (26). With that choice of G, under
the assumptions of the theorem, we get F = 0 in Ωa. In other words, the “cone
condition” in (46) is satisfied and therefore it is not restrictive in this case.

By a perturbation argument, if g is close enough to the Euclidean metric, then
F would vanish in a set a bit smaller than Ω0.

3.3. Uniqueness for the non-linear problem. We now go back to the prob-
lem of determining the sound speed c in (1) from Λf with f fixed and known.
Clearly, some conditions on f are needed since, when f = 0, for example, we get
no information about c.

Based on Theorems 3.1 or 3.2, we can easily formulate versions for the non-linear
problem. We will formulate a consequence of the latter theorem under conditions
that guarantee that we can recover c in the whole Ω.
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Theorem 3.3. Let c and c̃ be two smooth positive speeds equal to 1 outside Ω. Let
Σs be as in Theorem 2.3 and satisfy (a) and (b) there with F := c̃2 − c2 and with
the strict convexity assumption in (b) fulfilled w.r.t. the speed c. Let

(49) Λ̃f = Λf on [0, T ]× ∂Ω, with T > max
s

dist(Σs ∩ Ω̄, ∂Ω).

Assume that for some compact K ⊂ Ω̄,

(50) supp(c̃− c) ⊂ K, Δf(x) �= 0 for x ∈ K.

Then c̃ = c in
⋃
Σs.

If in particular
⋃
Σs is dense in K, and T > dist(Ω, ∂Ω), then c̃ = c.

Examples of domains Ω so that any K ⊂ Ω̄ satisfies the density condition include
geodesic balls with a fixed center under the assumption that they are all strictly
convex. Then c̃ = c everywhere except in the center, and by continuity, this is true
in the center as well. In particular, this holds if ‖c‖C2 ≤ M with some M > 0 fixed,
and diam(Ω) � 1 because M puts an upper bound of the curvature of the metric
c−2dx2.

Proof. Set w = ũ−u, where ũ and u solve (1) with the speeds c̃ and c, respectively;
and the same holds for f . Then w solves (2) with a and F as in (3). The condition
(13) is then equivalent to Δũ(0, x) �= 0, ∀x ∈ K. By (1), this is equivalent to
Δf(x) �= 0, ∀x ∈ K. Then an application of Theorem 3.2 completes the proof. �

Remark 3.2. The condition Δf(x) �= 0 may look mysterious at first glance. The
stability analysis below shows that it is needed for the linearization to be Fredholm.
A simplified look at this condition is the following. Let us remove the need for f to
be 0 outside Ω. Then any harmonic function f is also a time independent solution
u = f of the wave equation (∂2

t − c2(x)Δ)u = 0, regardless of c. Then Λf carries
no information about c at all. If f is harmonic only on some open geodesic ball U ,
then u = f (regardless of the speed) in the light cone with base U , and then a = 0
there; see (3). Then the kernel of the linearized map would be C∞ for y ∈ U , as it
follows from (53). That implies high instability for the linearization, at least.

3.4. Stability. As a general principle, we have stability in Sobolev spaces if we can
detect all singularities at G where we make measurements; see, e.g., [21]. Under
the assumptions of Theorem 3.3, that would require that

(51) ∀(x, ξ) ∈ SK, the geodesic through (x, ξ) hits ∂Ω for some t with |t| < T ,

where SK stands for the unit sphere bundle of (K, g). Here we used the fact that
the problem extends in an even way w.r.t. t. We also identify vectors and covectors
by the metric g.

Notice that condition (51) is stronger than the uniqueness condition (48). The
latter requires that from any x there is a signal (a unit speed curve) originating
from x reaching ∂Ω up to time T , i.e., dist(x, ∂Ω) < T . Condition (51) requires
that from any x and any direction ξ the geodesic through it reaches ∂Ω for time
|t| < T . The same conditions appear in the analysis of the thermoacoustic problem
of recovery of f , given c and Λf ; see [23, 18]. Here however, we assume the foliation
condition as well.

Let Rw denote the trace of the first component w of w := [w,wt], defined on
[0, T ]×Ω, to [0, T ]× ∂Ω. When w is a scalar valued function, Rw just denotes the
trace of w.
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Theorem 3.4. Let w solve (2) with w, let a satisfy the regularity assumptions of
Theorem 3.1, let F be supported in a compact K ⊂ Ω, with F ∈ L2(K), and let
a(0, x) �= 0 for all x ∈ K. Let Σs be as in Theorem 2.3, and assume that

⋃
Σs

is dense in Ω (the foliation condition). Let K and T satisfy (51) (the stability
condition). Then

(52) ‖F‖L2(K) ≤ C‖wtt‖L2([0,T ]×∂Ω)

with a constant C that remains uniform when the coefficient a stays in a fixed
bounded set in C2([0, T ]; C(Ω̄)).

Proof. We use the notation a(t) = a(t, ·) below. Differentiate

(53) w =

∫ t

0

U(s) [0, a(t− s)F ] ds

to get

∂tRw = RU(t)[0, a(0)F ] +R

∫ t

0

U(s)[0, a′(t− s)F ] ds.

Differentiate again and use the identity a′(0) = 0 and the definition of Λ to get

∂2
tRw = Λa(0)F +R

∫ t

0

U(s)[0, a′′(t− s)F ] ds

= Λa(0)F +R

∫ t

0

U(t− s)[0, a′′(s)F ] ds.

(54)

Let χ ∈ C∞([0, T ]) be such that χ = 0 near T , and χ = 1 on [0, T0], where T0 < T
is such that (48) still holds with T replaced by T0. Let B be the back-projection
operator defined as follows. If v solves⎧⎨

⎩
(∂2

t − c2Δ)v = 0 in (0, T )× Ω,
v|t=T = ∂tv|t=T = 0,

v|[0,T ]×∂Ω = h,

then define Bh := v|t=0. By [23, Theorem 3], BχΛ is a classical ΨDO of order 0
with principal symbol

1

2
χ(τ+(x, ξ)) +

1

2
χ(τ−(x, ξ)),

where ±τ± ≥ 0 are the times needed for the unit speed geodesic issued from (x, ξ) to
hit ∂Ω. We recall that we identify vectors and covectors by the metric g = c−2dx2.
Condition (51) guarantees that the symbol above is elliptic. Let Q, a zeroth order
ΨDO, be a properly supported parametrix for it, i.e., QBχΛ = Id + K0 in a
neighborhood of K, with K0 smoothing. For the purpose of this proof, we only
need K0 : L2 → H1, which can be achieved with finite smoothness requirements on
c.

Apply QBχ to (54) to get

(55) QBχ∂2
tRw = (Id +K0)a(0)F +QBχ

∫ t

0

RU(t− s)[0, a′′(s)F ] ds.

For any s ∈ [0, t], the function [0, a′′(s)F ] belongs to the energy space H and is
supported in Ω. Then RU(t − s) (a more accurate notation would be RU(· − s))
maps that function to a function that belongs to H1

(0)(R×∂Ω), where the subscript

(0) indicates a support disconnected from t = 0. This is explained in [23] in the
context of thermoacoustic tomography, and the reason is that RU(· − s) is an FIO
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of order 0 with a canonical relation of graph type; see also [25]. The dependence
on s is continuous, therefore, the integral in (54) belongs to that space as well. By
[14], B : H1

(0)(R×∂Ω) → H1
0 (Ω) is continuous. Since Q is of order zero, the integral

term in (55) is a compact operator of F in L2(Ω), mapping L2(Ω) into H1(Ω).
Therefore, since a(0)|K �= 0,

(56) ‖F‖L2(K) ≤ C‖∂2
tRw‖L2([0,T ]×∂Ω) + C‖K2F‖L2(Ω),

with K2 : L2(K) → L2(Ω) compact. Here we have used the fact that B :
L2
comp(R × ∂Ω) → L2(Ω) also follows from [14], or from the property of B to

be an FIO of order 0 with a canonical relation of graph type [23]. Notice now that
the map F 	→ Rwtt, from L2(K) to L2([0, T ] × ∂Ω), is bounded by (54) and the
analysis following it because the integral term there is actually a compact operator,
while F 	→ Λa(0)F is bounded as an FIO of order 0 with a canonical relation of
graph type [25, 23]. On the other hand, it is injective as well, since wtt = 0 easily
implies w = 0, and then we apply Theorem 3.3. Then by [28, Proposition A.6.7],
estimate (56) implies a similar one, with a different C, and the last term missing.

The statement about the uniformity of C does not follow directly from the last ar-
gument above because there is no control over C. Instead, we will perturb estimate
(52). Notice first that by (54), the map C2([0, T ]; C(Ω̄)) � a 	→ wtt|[0,T ]×∂Ω ∈ L2

is continuous. Then if a and ã are two coefficients and w, w̃ are the corresponding
solutions, we have

‖F‖L2(K) ≤C‖wtt‖L2([0,T ]×∂Ω)

≤C‖w̃tt‖L2([0,T ]×∂Ω) + C‖w̃tt − wtt‖L2([0,T ]×∂Ω)

≤C‖w̃tt‖L2([0,T ]×∂Ω) + Cδ‖F‖L2(K),

where δ � 1 when ã is close enough to a in C2([0, T ]; C(Ω̄)). We can therefore
absorb the δ term with the l.h.s. �

We are ready now to formulate the stability result for the thermoacoustic prob-
lem.

Theorem 3.5. Let K ⊂ Ω be a compact set. Let c, c̃ ∈ Ck, f ∈ Hk+1, k > n/2,
be as in Theorem 3.3 and let the assumptions of that theorem be satisfied, except
for (49). Then

(57) ‖c̃− c‖L2(K) ≤ C‖∂2
t (Λ̃− Λ)f‖L2([0,T ]×∂Ω),

with C = C(C1, f, c) uniform if c̃ satisfies ‖c̃‖Ck ≤ C1, 1/C1 ≤ c̃, k > n/2.

Proof. Apply Theorem 3.4 with a and F as in (3). We only need to prove the
statement about the uniformity of C. That requires us to estimate ‖ũ‖C2([0,T ]×∂Ω)

in terms of c̃; see (3) and Theorem 3.4.
It is straightforward to see that if c ∈ Ck−1, then Akf ∈ H provided that

f ∈ Hk+1×Hk. ThenAkU(t)f is locally inHk+1×Hk, therefore the first component
of U(t)f is Ck+1−n/2 provided that k+1−n/2 > 0. We have k+1−n/2 ≥ 2 when
k − 1 ≥ n/2. Therefore, ũ ∈ C([0, T ]; C2) when k > n/2. The analysis of the rest
of the second derivatives of u is similar. �
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