Variation for singular integrals on Lipschitz graphs: and endpoint estimates

Author:
Albert Mas

Journal:
Trans. Amer. Math. Soc. **365** (2013), 5759-5781

MSC (2010):
Primary 42B20, 42B25

Published electronically:
June 6, 2013

MathSciNet review:
3091264

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be integers and let denote the -dimensional Hausdorff measure restricted to an -dimensional Lipschitz graph in with slope strictly less than . For , we prove that the -variation and oscillation for Calderón-Zygmund singular integrals with odd kernel are bounded operators in for , from to , and from to . Concerning the first endpoint estimate, we actually show that such operators are bounded from the space of finite complex Radon measures in to .

**[Bo]**Jean Bourgain,*Pointwise ergodic theorems for arithmetic sets*, Inst. Hautes Études Sci. Publ. Math.**69**(1989), 5–45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. MR**1019960****[CJRW1]**James T. Campbell, Roger L. Jones, Karin Reinhold, and Máté Wierdl,*Oscillation and variation for the Hilbert transform*, Duke Math. J.**105**(2000), no. 1, 59–83. MR**1788042**, 10.1215/S0012-7094-00-10513-3**[CJRW2]**James T. Campbell, Roger L. Jones, Karin Reinhold, and Máté Wierdl,*Oscillation and variation for singular integrals in higher dimensions*, Trans. Amer. Math. Soc.**355**(2003), no. 5, 2115–2137 (electronic). MR**1953540**, 10.1090/S0002-9947-02-03189-6**[DS]**Guy David and Stephen Semmes,*Analysis of and on uniformly rectifiable sets*, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993. MR**1251061****[Du]**Javier Duoandikoetxea,*Fourier analysis*, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. MR**1800316****[JKRW]**Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Máté Wierdl,*Oscillation in ergodic theory*, Ergodic Theory Dynam. Systems**18**(1998), no. 4, 889–935. MR**1645330**, 10.1017/S0143385798108349**[JSW]**Roger L. Jones, Andreas Seeger, and James Wright,*Strong variational and jump inequalities in harmonic analysis*, Trans. Amer. Math. Soc.**360**(2008), no. 12, 6711–6742. MR**2434308**, 10.1090/S0002-9947-08-04538-8**[LT]**Michael Lacey and Erin Terwilleger,*A Wiener-Wintner theorem for the Hilbert transform*, Ark. Mat.**46**(2008), no. 2, 315–336. MR**2430729**, 10.1007/s11512-008-0080-2**[Lp]**D. Lépingle,*La variation d’ordre 𝑝 des semi-martingales*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**36**(1976), no. 4, 295–316 (French). MR**0420837****[MT1]**Albert Mas and Xavier Tolsa,*Variation and oscillation for singular integrals with odd kernel on Lipschitz graphs*, Proc. Lond. Math. Soc. (3)**105**(2012), no. 1, 49–86. MR**2948789**, 10.1112/plms/pdr061**[MT2]**A. Mas and X. Tolsa,*Variation for the Riesz transform and uniform rectifiability,*to appear in J. Eur. Math. Soc.**[Ma]**Pertti Mattila,*Geometry of sets and measures in Euclidean spaces*, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR**1333890****[OSTTW]**Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, and James Wright,*A variation norm Carleson theorem*, J. Eur. Math. Soc. (JEMS)**14**(2012), no. 2, 421–464. MR**2881301**, 10.4171/JEMS/307**[To1]**Xavier Tolsa,*BMO, 𝐻¹, and Calderón-Zygmund operators for non doubling measures*, Math. Ann.**319**(2001), no. 1, 89–149. MR**1812821**, 10.1007/PL00004432**[To2]**Xavier Tolsa,*A proof of the weak (1,1) inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition*, Publ. Mat.**45**(2001), no. 1, 163–174. MR**1829582**, 10.5565/PUBLMAT_45101_07**[To3]**X. Tolsa,*Analytic capacity and Calderón-Zygmund theory with non doubling measures,*book in preparation.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
42B20,
42B25

Retrieve articles in all journals with MSC (2010): 42B20, 42B25

Additional Information

**Albert Mas**

Affiliation:
Departamento de Matemáticas, Universidad del País Vasco, 48080 Bilbao, Spain

Email:
amasblesa@gmail.com

DOI:
http://dx.doi.org/10.1090/S0002-9947-2013-05815-1

Keywords:
$\rho$-variation and oscillation,
Calder\'on-Zygmund singular integrals.

Received by editor(s):
September 22, 2011

Published electronically:
June 6, 2013

Additional Notes:
The author was partially supported by grants AP2006-02416 (FPU program, Spain), MTM2010-16232 (Spain), and 2009SGR-000420 (Generalitat de Catalunya, Spain).

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.