Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Variation for singular integrals on Lipschitz graphs: $ L^p$ and endpoint estimates


Author: Albert Mas
Journal: Trans. Amer. Math. Soc. 365 (2013), 5759-5781
MSC (2010): Primary 42B20, 42B25
DOI: https://doi.org/10.1090/S0002-9947-2013-05815-1
Published electronically: June 6, 2013
MathSciNet review: 3091264
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ 1\leq n<d$ be integers and let $ \mu $ denote the $ n$-dimensional Hausdorff measure restricted to an $ n$-dimensional Lipschitz graph in $ \mathbb{R}^d$ with slope strictly less than $ 1$. For $ \rho >2$, we prove that the $ \rho $-variation and oscillation for Calderón-Zygmund singular integrals with odd kernel are bounded operators in $ L^{p}(\mu )$ for $ 1<p<\infty $, from $ L^1(\mu )$ to $ L^{1,\infty }(\mu )$, and from $ L^\infty (\mu )$ to $ BMO(\mu )$. Concerning the first endpoint estimate, we actually show that such operators are bounded from the space of finite complex Radon measures in $ \mathbb{R}^d$ to $ L^{1,\infty }(\mu )$.


References [Enhancements On Off] (What's this?)

  • [Bo] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. 69 (1989), pp. 5-45. MR 1019960 (90k:28030)
  • [CJRW1] J. Campbell, R. L. Jones, K. Reinhold, and M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J. 105 (2000), pp. 59-83. MR 1788042 (2001h:42021)
  • [CJRW2] J. Campbell, R. L. Jones, K. Reinhold, and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc. 35 (2003), pp. 2115-2137. MR 1953540 (2003j:44007)
  • [DS] G. David and S. Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, 38, American Mathematical Society, Providence, RI (1993). MR 1251061 (94i:28003)
  • [Du] J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence, RI, (2001). MR 1800316 (2001k:42001)
  • [JKRW] R. L. Jones, R. Kaufman, J. Rosenblatt, and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory and Dynam. Sys. 18 (1998), pp. 889-936. MR 1645330 (2000b:28019)
  • [JSW] R. L. Jones, A. Seeger, and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 (2008), pp. 6711-6742. MR 2434308 (2010b:42017)
  • [LT] M. Lacey and E. Terwilleger, A Wiener-Wintner theorem for the Hilbert transform, Ark. Mat. 46 (2008), 2, pp. 315-336. MR 2430729 (2010e:42005)
  • [Lp] D. Lépingle, La variation d'order p des semi-martingales, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 36 (1976), pp. 295-316. MR 0420837 (54:8849)
  • [MT1] A. Mas and X. Tolsa, Variation and oscillation for singular integrals with odd kernel on Lipschitz graphs, Proc. London Math. Soc. 105 (2012), no. 1, pp. 49-86. MR 2948789
  • [MT2] A. Mas and X. Tolsa, Variation for the Riesz transform and uniform rectifiability, to appear in J. Eur. Math. Soc.
  • [Ma] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge (1995). MR 1333890 (96h:28006)
  • [OSTTW] R. Oberlin, A. Seeger, T. Tao, C. Thiele, and J. Wright, A variation norm Carleson theorem, J. Eur. Math. Soc. 14 (2012), 2, pp. 421-464. MR 2881301
  • [To1] X. Tolsa. $ BMO$, $ H^1$, and Calderón-Zygmund operators for non-doubling measures, Math. Ann. 319(1) (2001), pp. 89-149. MR 1812821 (2002c:42029)
  • [To2] X. Tolsa. A proof of the week $ (1,1)$ inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition, Pub. Mat. 45(1) (2001), pp. 163-174. MR 1829582 (2002d:42019)
  • [To3] X. Tolsa, Analytic capacity and Calderón-Zygmund theory with non doubling measures, book in preparation.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42B20, 42B25

Retrieve articles in all journals with MSC (2010): 42B20, 42B25


Additional Information

Albert Mas
Affiliation: Departamento de Matemáticas, Universidad del País Vasco, 48080 Bilbao, Spain
Email: amasblesa@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-2013-05815-1
Keywords: $\rho$-variation and oscillation, Calder\'on-Zygmund singular integrals.
Received by editor(s): September 22, 2011
Published electronically: June 6, 2013
Additional Notes: The author was partially supported by grants AP2006-02416 (FPU program, Spain), MTM2010-16232 (Spain), and 2009SGR-000420 (Generalitat de Catalunya, Spain).
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society