Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Geometry and Markoff's spectrum for $ \mathbb{Q}(i)$, I


Authors: Ryuji Abe and Iain R. Aitchison
Journal: Trans. Amer. Math. Soc. 365 (2013), 6065-6102
MSC (2010): Primary 57M50, 20H10, 53C22, 11J06
DOI: https://doi.org/10.1090/S0002-9947-2013-05850-3
Published electronically: August 1, 2013
MathSciNet review: 3091276
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a study of the relationship between geometry of geodesics and Markoff's spectrum for $ \mathbb{Q}(i)$. There exists a particular immersed totally geodesic twice punctured torus in the Borromean rings complement, which is a double cover of the once punctured torus having Fricke coordinates $ (2\sqrt {2}, 2\sqrt {2}, 4)$. The set of the simple closed geodesics on this once punctured torus is decomposed into two subsets. The discrete part of Markoff's spectrum for $ \mathbb{Q}(i)$ (except for one) is given by the maximal Euclidean height of the lifts of the simple closed geodesics composing one of the subsets.


References [Enhancements On Off] (What's this?)

  • 1. R. Abe, On correspondences between once punctured tori and closed tori: Fricke groups and real lattices, Tokyo J. of Math., 23 (2000), 269-293. MR 1806465 (2002h:32012)
  • 2. R. Abe and B. Rittaud, Combinatorics on words associated to Markoff spectra, preprint.
  • 3. I.R. Aitchison, E. Lumsden and J.H. Rubinstein, Cusp structures of alternating links, Invent. Math. 109 (1992), 473-494. MR 1176199 (93h:57007)
  • 4. I.R. Aitchison and J.H. Rubinstein, Combinatorial cubings, cusps, and the dodecahedral knots, in Proceedings of the Research Semester in Low Dimensional Topology at Ohio State University, Topology 90, pp. 17-26. MR 1184399 (93i:57016)
  • 5. I.R. Aitchison and J.H. Rubinstein, Canonical surgery on alternating link diagrams, in Proceedings of the International Conference on Knots, Osaka 1990, pp. 543-558. MR 1177446 (93h:57006)
  • 6. H. Akiyoshi, M. Sakuma, M. Wada, Y. Yamashita, Punctured torus groups and $ 2$-bridge knot groups (I), Lecture Notes in Math., 1909, Springer, Berlin, Heidelberg, 2007. MR 2330319 (2008e:57001)
  • 7. A.F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics 91, Springer, New York, 1983. MR 698777 (85d:22026)
  • 8. A.F. Beardon, J. Lehner, M. Sheingorn, Closed geodesics on a Riemann surface with application to the Markoff spectrum, Trans. Amer. Math. Soc. 295 (1986), 635-647. MR 833700 (87g:11066)
  • 9. B.H. Bowditch, A proof of MaShane's identity via Markoff triples, Bull. London Math. Soc. 28 (1996), 73-78. MR 1356829 (96i:58137)
  • 10. B.H. Bowditch, Markoff triples and quasifuchsian groups, Proc. London Math. Soc. (3) 77 (1998), 697-736. MR 1643429 (99f:57014)
  • 11. H. Cohn, Approach to Markoff's minimal forms through modular functions, Ann. of Math. 61 (1955), 1-12. MR 0067935 (16:801e)
  • 12. H. Cohn, Representation of Markoff's binary quadratic forms by geodesics on a perforated torus, Acta Arith. 18 (1971), 125-136. MR 0288079 (44:5277)
  • 13. H. Cohn, Markoff forms and primitive words, Math. Ann. 196 (1972), 8-22. MR 0297847 (45:6899)
  • 14. H. Cohn, Growth types of Fibonacci and Markoff, Fibonacci Quart. 17 (1979), 178-183. MR 536967 (82j:10027)
  • 15. H. Cohn, Minimal geodesics on Fricke's torus covering, in Riemann Surfaces and Related Topics, Ann. of Math. Studies 97, Princeton Univ. Press 1980, pp. 73-85. MR 624806 (82i:10033)
  • 16. H. Cohn, Remarks on the cyclotomic fricke groups, in Kleinian Groups and Related Topics, Lecture Notes in Math., 971, Springer, New York, 1983, pp. 15-23. MR 690274 (84h:10030)
  • 17. T.W. Cusick and M.E. Flahive, The Markoff and Lagrange spectra, Mathematical Surveys and Monographs 30, AMS, Providence R.I., 1989. MR 1010419 (90i:11069)
  • 18. B. Fine, The structure of $ {\rm PSL}(2, R)$; R, the ring of integers in a Euclidean quadratic imaginary number field, in Discontinuous Groups and Riemann Surfaces, Ann. of Math. Studies 79, Princeton Univ. Press 1974, pp. 145-170. MR 0352289 (50:4776)
  • 19. L. Ford, On the closeness of approach of complex rational fractions to a complex irrational number, Trans. Amer. Math. Soc. 27 (1925), 146-154. MR 1501304
  • 20. R. Fricke, Über die Theorie der automorphen Modulgruppen, Nachr. Akad. Wiss. Göttingen (1896), 91-101.
  • 21. A. Haas, Diophantine approximation on hyperbolic Riemann surfaces, Acta Math. 156 (1986), 33-82. MR 822330 (87h:11063)
  • 22. A. Haas, The geometry of Markoff forms, in Number theory (New York 1984-1985), Lecture Notes in Math., 1240, Springer, Berlin, 1987, pp. 135-144. MR 894509 (88j:11037)
  • 23. L. Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math. 84 (1966), 404-420. MR 0203000 (34:2859)
  • 24. J. Lehner and M. Sheingorn, Simple closed geodesics on $ H^+/\Gamma (3)$ arise from the Markoff spectrum, Bull. Amer. Math. Soc. 11 (1984), 359-362. MR 752798 (86b:11033)
  • 25. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience Publishers, New York, 1966.
  • 26. A. V. Malyshev, Markov and Lagrange spectra, Zap. Nauch. Sem. Leningrad. Otdel. Math. Inst. Steklov. 67 (1977), 3-38. [transl., J. Soviet Math. 16 (1981), 767-788]
  • 27. A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381-406.
  • 28. A. Markoff, Sur les formes quadratiques binaires indéfinies, II, Math. Ann. 17 (1880), 379-399. MR 1510073
  • 29. T. Nakanishi and M. Näätänen, The Teichmüller space of a punctured surface represented as a real algebraic space, Michigan Math. J. 42 (1995), 235-258. MR 1342488 (96f:32033)
  • 30. J. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics 149, Springer, New York, 1994. MR 1299730 (95j:57011)
  • 31. A.L. Schmidt, Diophantine approximation of complex numbers, Acta. Math. 134 (1975), 1-85. MR 0422168 (54:10160)
  • 32. A.L. Schmidt, On $ C$-minimal forms, Math. Ann. 215 (1975), 203-214. MR 0376530 (51:12705)
  • 33. A.L. Schmidt, Minimum of quadratic forms with respect to Fuchsian groups. I, J. Reine Angew. Math. 286/287 (1976), 341-368. MR 0457358 (56:15566)
  • 34. P. Schmutz, Systoles of arithmetic surfaces and the Markoff spectrum, Math. Ann. 305 (1996), 191-203. MR 1386112 (97b:11090)
  • 35. C. Series, The geometry of Markoff numbers, Math. Intelligencer, 7(3), (1985), 20-29. MR 795536 (86j:11069)
  • 36. W.P. Thurston, The geometry and topology of 3-manifolds. Princeton University Lecture Notes 1978.
  • 37. L.Ya. Vulakh, The Markoff spectrum of imaginary quadratic field $ \mathbb{Q}(i \sqrt {D})$, where $ D \equiv \!\!\!\!\!\!\! \backslash \ 3$ $ ({\rm mod} 4)$, Vestnik Moskov. Univ. Ser. 1 Math. Mekh. 26 (1971), 32-41. [Russian] MR 0292765 (45:1847)
  • 38. L.Ya. Vulakh, The Markov spectra for Triangle groups, J. Number Theory 67 (1997), 11-28. MR 1485425 (99e:11093)
  • 39. L.Ya. Vulakh, The Markov spectra for Fuchsian groups, Trans. Amer. Math. Soc. 352 (2000), 4067-4094. MR 1650046 (2000m:11056)
  • 40. N. Wielenberg, The structure of certain subgroups of the Picard group, Math. Proc. Camb. Phil. Soc. 84 (1978), 427-436. MR 503003 (80b:57010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57M50, 20H10, 53C22, 11J06

Retrieve articles in all journals with MSC (2010): 57M50, 20H10, 53C22, 11J06


Additional Information

Ryuji Abe
Affiliation: Department of Mathematics, Tokyo Polytechnic University, Atsughi, Kanagawa 243-0297, Japan
Email: ryu2abe@email.plala.or.jp

Iain R. Aitchison
Affiliation: Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia
Email: I.Aitchison@ms.unimelb.edu.au

DOI: https://doi.org/10.1090/S0002-9947-2013-05850-3
Received by editor(s): October 22, 2011
Received by editor(s) in revised form: March 30, 2012
Published electronically: August 1, 2013
Additional Notes: The first author was partially supported by Université de Tours (LMPT) and Université de Caen (LMNO)
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society