Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Bishop-Phelps-Bollobás Theorem for bilinear forms


Authors: María D. Acosta, Julio Becerra-Guerrero, Domingo García and Manuel Maestre
Journal: Trans. Amer. Math. Soc. 365 (2013), 5911-5932
MSC (2010): Primary 46B20; Secondary 46B25, 46B28
DOI: https://doi.org/10.1090/S0002-9947-2013-05881-3
Published electronically: July 2, 2013
MathSciNet review: 3091270
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we provide versions of the Bishop-Phelps-Bollobás Theorem for bilinear forms. Indeed we prove the first positive result of this kind by assuming uniform convexity on the Banach spaces. A characterization of the Banach space $ Y$ satisfying a version of the Bishop-Phelps-Bollobás Theorem for bilinear forms on $ \ell _1 \times Y$ is also obtained. As a consequence of this characterization, we obtain positive results for finite-dimensional normed spaces, uniformly smooth spaces, the space $ \mathcal {C}(K)$ of continuous functions on a compact Hausdorff topological space $ K$ and the space $ K(H)$ of compact operators on a Hilbert space $ H$. On the other hand, the Bishop-Phelps-Bollobás Theorem for bilinear forms on $ \ell _1 \times L_1 (\mu )$ fails for any infinite-dimensional $ L_1 (\mu )$, a result that was known only when $ L_1 (\mu ) = \ell _1$.


References [Enhancements On Off] (What's this?)

  • 1. M.D. Acosta, R.M. Aron, D. García and M. Maestre, The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (11) (2008), 2780-2799. MR 2414220 (2009c:46016)
  • 2. R.M. Aron, B. Cascales and O. Kozhushkina, The Bishop-Phelps-Bollobás Theorem and Asplund operators, Proc. Amer. Math. Soc. 139 (2011), 3553-3560. MR 2813386 (2012d:46046)
  • 3. R.M. Aron, Y.S. Choi, D. García and M. Maestre, The Bishop-Phelps-Bollobás theorem for $ {\mathcal {L}}(L_1(\mu ), L_\infty [0,1])$, Adv. Math. 228 (2011), 617-628. MR 2822241 (2012f:46023)
  • 4. E. Bishop and R.R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. (N.S.) 67 (1961), 97-98. MR 0123174 (23:A503)
  • 5. B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181-182. MR 0267380 (42:2282)
  • 6. F.F. Bonsall and J. Duncan, Numerical Ranges II, Lecture Note Series 10 London Math. Soc., Cambridge University Press, Cambridge, 1973. MR 0442682 (56:1063)
  • 7. L. Cheng, D. Dai and Y. Dong, A sharp operator version of the Bishop-Phelps Theorem for operators from $ \ell _1$ to CL-spaces, Proc. Amer. Math. Soc. 141 (2013), 867-872. MR 3003679
  • 8. Y.S. Choi and S.K. Kim, The Bishop-Phelps-Bollobás property and lush space, J. Math. Anal. Appl. 390 (2012), 549-555. MR 2890536
  • 9. Y.S. Choi and H.G. Song, The Bishop-Phelps-Bollobás theorem fails for bilinear forms on $ \ell _1 \times \ell _1 $, J. Math. Anal. Appl. 360 (2009), 752-753. MR 2561271 (2010h:46016)
  • 10. D. Dai, The Bishop-Phelps-Bollobás Theorem for bilinear mappings, preprint, 2011.
  • 11. M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach space Theory. The basis for linear and nonlinear analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer-Verlgag, New York, 2011. MR 2766381
  • 12. C. Franchetti and R. Payá, Banach spaces with strongly differentiable norm, Boll. U.M.I. 7 (1993), 45-70. MR 1216708 (94d:46015)
  • 13. M. Martín and R. Payá, On CL-spaces and almost CL-spaces, Ark. Mat. 42 (2004), 107-118. MR 2056547 (2005e:46019)
  • 14. R.E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics 183, Springer-Verlag, New York, 1998. MR 1650235 (99k:46002)
  • 15. R. Payá and Y. Saleh, New sufficient conditions for the denseness of norm attaining multilinear forms, Bull. London Math. Soc. 34 (2002), 212-218. MR 1874249 (2003a:46033)
  • 16. W. Rudin, Real and complex analysis, McGraw-Hill Book Co., London, 1970.
  • 17. R. Schatten, A Theory of cross spaces, Ann. of Math. Studies no. 26, Princeton Univ. Press, Princeton, N.J., 1950. MR 0036935 (12:186e)
  • 18. R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112 (22:9878)
  • 19. C. Stegall, Optimization and differentiation in Banach spaces, Linear Algebra Appl. 84 (1986), 191-211. MR 872283 (88a:49005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46B20, 46B25, 46B28

Retrieve articles in all journals with MSC (2010): 46B20, 46B25, 46B28


Additional Information

María D. Acosta
Affiliation: Departamento de Análisis Matemático, Universidad de Granada, Facultad de Ciencias, 18071-Granada, Spain
Email: dacosta@ugr.es

Julio Becerra-Guerrero
Affiliation: Departamento de Análisis Matemático, Universidad de Granada, Facultad de Ciencias, 18071-Granada, Spain
Email: juliobg@ugr.es

Domingo García
Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot Valencia, Spain
Email: domingo.garcia@uv.es

Manuel Maestre
Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot Valencia, Spain
Email: manuel.maestre@uv.es

DOI: https://doi.org/10.1090/S0002-9947-2013-05881-3
Keywords: Bishop-Phelps-Bollob\'as Theorem, bilinear form, Banach space
Received by editor(s): February 6, 2012
Published electronically: July 2, 2013
Additional Notes: The first author was supported by MICINN and FEDER Project MTM-2009–07498 and Junta de Andalucía \com{Proyecto de Excelencia} P09-FQM–4911
The second author was supported by Junta de Andalucía grants FQM 0199 and FQM 1215, and MTM-2011-23843
The third and fourth authors were supported by MICINN Project MTM2011-22417
The fourth author was also supported by Prometeo 2008/101 and MEC PR2010-0374.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society