Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Neumann functions for second order elliptic systems with measurable coefficients


Authors: Jongkeun Choi and Seick Kim
Journal: Trans. Amer. Math. Soc. 365 (2013), 6283-6307
MSC (2010): Primary 35J08, 35J47, 35J57
DOI: https://doi.org/10.1090/S0002-9947-2013-05886-2
Published electronically: June 3, 2013
MathSciNet review: 3105752
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study Neumann functions for divergence form, second-order elliptic systems with bounded measurable coefficients in a bounded Lipschitz domain or a Lipschitz graph domain. We establish existence, uniqueness, and various estimates for the Neumann functions under the assumption that weak solutions of the system enjoy interior Hölder continuity. Also, we establish global pointwise bounds for the Neumann functions under the assumption that weak solutions of the system satisfy a certain natural local boundedness estimate. Moreover, we prove that such a local boundedness estimate for weak solutions of the system is in fact equivalent to the global pointwise bound for the Neumann function. We present a unified approach valid for both the scalar and the vectorial cases.


References [Enhancements On Off] (What's this?)

  • 1. Alfonseca, M. A.; Auscher, P.; Axelsson, A.; Hofmann, S.; Kim, S. Analyticity of layer potentials and $ L^2$ solvability of boundary value problems for divergence form elliptic equations with complex $ L^\infty $ coefficients. Adv. Math. 226 (2011), no. 5, 4533-4606. MR 2770458 (2012g:35055)
  • 2. Auscher, P.; Axelsson, A. Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I. Invent. Math. 184 (2011), no. 1, 47-115. MR 2782252 (2012c:35111)
  • 3. Auscher, P.; Axelsson, A.; Hofmann, S. Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems. J. Funct. Anal. 255 (2008), no. 2, 374-448. MR 2419965 (2009h:35079)
  • 4. Bergh, J.; Löfström, J. Interpolation spaces: An introduction. Springer-Verlag, Berlin-New York, 1976. MR 0482275 (58:2349)
  • 5. Byun, S.; Chen, H.; Kim, M.; Wang, L. $ L^p$ regularity theory for linear elliptic systems. Discrete Contin. Dyn. Syst. 18 (2007), no. 1, 121-134. MR 2276490 (2007m:35045)
  • 6. Cho, S.; Dong, H.; Kim, S. Global estimates for Green's matrix of second order parabolic systems with application to elliptic systems in two dimensional domains. Potential Anal. 36 (2012), no. 2, 339-372. MR 2886465
  • 7. Dong, H.; Kim, S. Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains. Trans. Amer. Math. Soc. 361 (2009), no. 6, 3303-3323. MR 2485428 (2010h:35005)
  • 8. Evans, L. C.; Gariepy, R. F. Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001)
  • 9. Fabes, E.; Mendez, O.; Mitrea, M. Boundary Layers on Sobolev-Besov Spaces and Poisson's Equation for the Laplacian in Lipschitz Domain. J. Funct. Anal. 159 (1998), no. 2, 323-368. MR 1658089 (99j:35036)
  • 10. Giaquinta, M. Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag, Basel, 1993. MR 1239172 (94g:49002)
  • 11. Grüter, M.; Widman, K.-O. The Green function for uniformly elliptic equations. Manuscripta Math. 37 (1982), no. 3, 303-342. MR 657523 (83h:35033)
  • 12. Hofmann, S.; Kim, S. The Green function estimates for strongly elliptic systems of second order. Manuscripta Math. 124 (2007), no. 2, 139-172. MR 2341783 (2008k:35110)
  • 13. Kang, K.; Kim, S. Global pointwise estimates for Green's matrix of second order elliptic systems. J. Differential Equations 249 (2010), no. 11, 2643-2662. MR 2718661 (2011h:35056)
  • 14. Kenig, C. E. Harmonic analysis techniques for second order elliptic boundary value problems. American Mathematical Society, Providence, RI, 1994. MR 1282720 (96a:35040)
  • 15. Kenig, C. E.; Lin, F.; Shen, Z. Homogenization of Elliptic Systems With Neumann Boundary Conditions. arXiv:1010.6114v1 [math.AP]
  • 16. Kenig, C. E.; Pipher, J. The Neumann problem for elliptic equations with nonsmooth coefficients. Invent. Math. 113 (1993), no. 3, 447-509. MR 1231834 (95b:35046)
  • 17. Littman, W.; Stampacchia, G.; Weinberger, H. F. Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 43-77. MR 0161019 (28:4228)
  • 18. Miranda, C. Partial differential equations of elliptic type. Springer-Verlag, New York-Berlin, 1970. MR 0284700 (44:1924)
  • 19. Shen, Z. Weighted estimates in $ L^2$ for Laplace's equation on Lipschitz domains. Trans. Amer. Math. Soc. 357 (2005), no. 7, 2843-2870. MR 2139930 (2006b:35074)
  • 20. Taylor, J. L.; Kim, S.; Brown, R. M. The Green function for elliptic systems in two dimensions. arXiv:1205.1089v1 [math.AP]

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35J08, 35J47, 35J57

Retrieve articles in all journals with MSC (2010): 35J08, 35J47, 35J57


Additional Information

Jongkeun Choi
Affiliation: Department of Mathematics, Yonsei University, Seoul 120-749, Republic of Korea
Email: cjg@yonsei.ac.kr

Seick Kim
Affiliation: Department of Mathematics, Yonsei University, Seoul 120-749, Republic of Korea
Address at time of publication: Department of Computational Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea
Email: kimseick@yonsei.ac.kr

DOI: https://doi.org/10.1090/S0002-9947-2013-05886-2
Keywords: Neumann function, Green's function, Neumann boundary problem, second-order elliptic system, measurable coefficients
Received by editor(s): July 2, 2011
Received by editor(s) in revised form: March 11, 2012
Published electronically: June 3, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society