Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 

 

Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves


Authors: Fang-Ting Tu and Yifan Yang
Journal: Trans. Amer. Math. Soc. 365 (2013), 6697-6729
MSC (2010): Primary 11F12; Secondary 11G18, 33C05
Published electronically: July 26, 2013
MathSciNet review: 3105767
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we will obtain new algebraic transformations of the $ {}_2F_1$-hypergeometric functions. The main novelty in our approach is the interpretation of identities among $ {}_2F_1$-hypergeometric functions as identities among automorphic forms on different Shimura curves.


References [Enhancements On Off] (What's this?)

  • 1. P. Bayer and A. Travesa, Uniformizing functions for certain Shimura curves, in the case 𝐷=6, Acta Arith. 126 (2007), no. 4, 315–339. MR 2289964, 10.4064/aa126-4-3
  • 2. Noam D. Elkies, Shimura curves for level-3 subgroups of the (2,3,7) triangle group, and some other examples, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 302–316. MR 2282932, 10.1007/11792086_22
  • 3. Édouard Goursat, Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique, Ann. Sci. École Norm. Sup. (2) 10 (1881), 3–142 (French). MR 1508709
  • 4. Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR 1177168
  • 5. Goro Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. (2) 85 (1967), 58–159. MR 0204426
  • 6. Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; Kan\cflex o Memorial Lectures, 1. MR 1291394
  • 7. Kisao Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), no. 1, 91–106. MR 0429744
  • 8. Kisao Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 201–212. MR 0463116
  • 9. Fang-Ting Tu, Schwarzian differential equations associated to Shimura curves of genus zero, preprint (2011).
  • 10. Raimundas Vidūnas, Transformations of some Gauss hypergeometric functions, J. Comput. Appl. Math. 178 (2005), no. 1-2, 473–487. MR 2127899, 10.1016/j.cam.2004.09.053
  • 11. Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
  • 12. Yifan Yang, Schwarzian differential equations and Hecke eigenforms on Shimura curves, Compositio Math. (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11F12, 11G18, 33C05

Retrieve articles in all journals with MSC (2010): 11F12, 11G18, 33C05


Additional Information

Fang-Ting Tu
Affiliation: Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 30010, Republic of China
Email: ft12.am95g@nctu.edu.tw

Yifan Yang
Affiliation: Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 30010, Republic of China – and – National Center for Theoretical Sciences, Hsinchu 300, Taiwan, Republic of China
Email: yfyang@math.nctu.edu.tw

DOI: http://dx.doi.org/10.1090/S0002-9947-2013-05960-0
Received by editor(s): December 12, 2011
Received by editor(s) in revised form: September 10, 2012
Published electronically: July 26, 2013
Additional Notes: The authors were partially supported by Grant 99-2115-M-009-011-MY3 of the National Science Council, Taiwan (R.O.C.).
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.