Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Surfaces with parallel mean curvature in $ \mathbb{C}P^n\times\mathbb{R}$ and $ \mathbb{C}H^n\times\mathbb{R}$

Authors: Dorel Fetcu and Harold Rosenberg
Journal: Trans. Amer. Math. Soc. 366 (2014), 75-94
MSC (2010): Primary 53A10, 53C42
Published electronically: May 31, 2013
MathSciNet review: 3118391
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider surfaces with parallel mean curvature vector (pmc surfaces) in $ \mathbb{C}P^n\times \mathbb{R}$ and $ \mathbb{C}H^n\times \mathbb{R}$, and, more generally, in cosymplectic space forms. We introduce a holomorphic quadratic differential on such surfaces. This is then used in order to show that the anti-invariant pmc $ 2$-spheres of a $ 5$-dimensional non-flat cosymplectic space form of product type are actually the embedded rotational spheres $ S_H^2\subset \bar M^2\times \mathbb{R}$ of Hsiang and Pedrosa, where $ \bar M^2$ is a complete simply-connected surface with constant curvature. When the ambient space is a cosymplectic space form of product type and its dimension is greater than $ 5$, we prove that an immersed non-minimal non-pseudo-umbilical anti-invariant $ 2$-sphere lies in a product space $ \bar M^4\times \mathbb{R}$, where $ \bar M^4$ is a space form. We also provide a reduction of codimension theorem for the pmc surfaces of a non-flat cosymplectic space form.

References [Enhancements On Off] (What's this?)

  • 1. U. Abresch and H. Rosenberg, A Hopf differential for constant mean curvature surfaces in $ \mathbb{S}^2\times \mathbb{R}$ and $ \mathbb{H}^2\times \mathbb{R}$, Acta Math. 193(2004), 141-174. MR 2134864 (2006h:53003)
  • 2. U. Abresch and H. Rosenberg, Generalized Hopf differentials, Mat. Contemp. 28(2005), 1-28. MR 2195187 (2006h:53004)
  • 3. P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian space forms, Israel J. Math. 141(2004), 157-183. MR 2063031 (2005f:53057)
  • 4. H. Alencar, M. do Carmo and R. Tribuzy, A theorem of Hopf and the Cauchy-Riemann inequality, Comm. Anal. Geom. 15(2007), 283-298. MR 2344324 (2009c:53071)
  • 5. H. Alencar, M. do Carmo and R. Tribuzy, A Hopf Theorem for ambient spaces of dimensions higher than three, J. Differential Geometry 84(2010), 1-17. MR 2629507 (2011e:53086)
  • 6. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser Boston, Progress in Mathematics, 203, 2002. MR 1874240 (2002m:53120)
  • 7. D. E. Blair and S. I. Goldberg, Topology of almost contact manifolds, J. Differential Geometry 1(1967), 347-354. MR 0226539 (37:2128)
  • 8. I. Castro, C. R. Montealegre and F. Urbano, Minimal Lagrangian submanifolds in the complex hyperbolic space, Illinois J. Math. 46(2002), 695-721. MR 1951236 (2004e:53089)
  • 9. B.-Y. Chen and G. D. Ludden, Surfaces with mean curvature vector parallel in the normal bundle, Nagoya Math. J. 47(1972), 161-167. MR 0331231 (48:9565)
  • 10. B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Am. Math. Soc. 193(1974), 257-266. MR 0346708 (49:11433)
  • 11. S.-S. Chern, On surfaces of constant mean curvature in a three-dimensional space of constant curvature, Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math. 1007, Springer, Berlin, 1983, 104-108. MR 730266 (86b:53058)
  • 12. D. Chinea, M. de León and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures Appl. 72(1993), 567-591. MR 1249410 (95c:53036)
  • 13. H. Endo, A note on invariant submanifolds in an almost cosymplectic manifold, Tensor (N.S.) 43(1986), 75-78. MR 878962 (88b:53042)
  • 14. J. H. Eschenburg and R. Tribuzy, Existence and uniqueness of maps into affine homogeneous spaces, Rend. Sem. Mat. Univ. Padova 89(1993), 11-18. MR 1229038 (94f:53092)
  • 15. J. M. Espinar and H. Rosenberg, Complete constant mean curvature surfaces in homogeneous spaces, Comment. Math. Helv. 86(2011), 659-674.
  • 16. D. Ferus, The torsion form of submanifolds in $ E^N$, Math. Ann. 193(1971), 114-120. MR 0287493 (44:4697)
  • 17. D. Fetcu, Surfaces with parallel mean curvature vector in complex space forms, J. Differential Geom. 91(2012), 215-232. MR 2971287
  • 18. S. Hirakawa, Constant Gaussian curvature surfaces with parallel mean curvature vector in two-dimensional complex space forms, Geom. Dedicata 118(2006), 229-244. MR 2239458 (2007c:53073)
  • 19. D. A. Hoffman, Surfaces in constant curvature manifolds with parallel mean curvature vector field, Bull. Amer. Math. Soc. 78(1972), 247-250. MR 0298601 (45:7653)
  • 20. H. Hopf, Differential Geometry in the Large, Lecture Notes in Math. 1000, Springer-Verlag, 1983. MR 707850 (85b:53001)
  • 21. A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 39(1996), 183-198.
  • 22. S. Maeda and T. Adachi, Holomorphic helices in a complex space form, Proc. Amer. Math. Soc. 125(1997), 1197-1202. MR 1353391 (97f:53114)
  • 23. S. Maeda and Y. Ohnita, Helical geodesic immersions into complex space forms, Geom. Dedicata 30(1989), 93-114. MR 995941 (90b:53067)
  • 24. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York, 1983. MR 719023 (85f:53002)
  • 25. S.-T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96(1974), 346-366. MR 0370443 (51:6670)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53A10, 53C42

Retrieve articles in all journals with MSC (2010): 53A10, 53C42

Additional Information

Dorel Fetcu
Affiliation: Department of Mathematics and Informatics, “Gh. Asachi” Technical University of Iasi, Bd. Carol I no. 11, 700506 Iasi, Romania

Harold Rosenberg
Affiliation: Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, Brasil

Keywords: Surfaces with parallel mean curvature vector, cosymplectic space forms, quadratic forms
Received by editor(s): November 22, 2010
Received by editor(s) in revised form: August 30, 2011
Published electronically: May 31, 2013
Additional Notes: The first author was supported by a Post-Doctoral Fellowship “Pós-Doutorado Sênior (PDS)” offered by FAPERJ, Brazil.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society