Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Metrics of positive scalar curvature and generalised Morse functions, Part II


Author: Mark Walsh
Journal: Trans. Amer. Math. Soc. 366 (2014), 1-50
MSC (2010): Primary 53C21, 57R45, 57R65; Secondary 58D17
DOI: https://doi.org/10.1090/S0002-9947-2013-05715-7
Published electronically: September 4, 2013
MathSciNet review: 3118389
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The surgery technique of Gromov and Lawson may be used to construct families of positive scalar curvature metrics which are parameterised by Morse functions. This has played an important role in the study of the space of metrics of positive scalar curvature on a smooth manifold and its corresponding moduli spaces. In this paper, we extend this technique to work for families of generalised Morse functions, i.e. smooth functions with both Morse and birth-death singularities.


References [Enhancements On Off] (What's this?)

  • 1. A. L. Besse, Einstein Manifolds, Springer-Verlag (Berlin, 1987) MR 867684 (88f:53087)
  • 2. B. Botvinnik, B. Hanke, T. Schick, M. Walsh, Homotopy groups of the moduli space of metrics of positive scalar curvature, Geom. Topol. 14 (2010), no. 4, 2047-2076. MR 2680210 (2012a:58020)
  • 3. B. Botvinnik and P. B. Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann 302, no. 3, 1995, 507-517. MR 1339924 (96f:58159)
  • 4. R. Carr, Construction of manifolds of positive scalar curvature, Trans. A.M.S. 307, no. 1, May 1988, 63-74. MR 936805 (89b:53077)
  • 5. J. Cerf, La stratification naturelle des espaces de fonctions differentiables reelles et le theoreme de la pseudo-isotopie, Publications mathematiques de l'I.H.E.S., tome 39 (1970), p. 5-173. MR 0292089 (45:1176)
  • 6. V. Chernysh, On the homotopy type of the space $ \mathcal {R}^{+}(M)$, Preprint, arXiv:math.GT/0405235
  • 7. R.L. Cohen, A decomposition of the space of generalized Morse functions, Algebraic topology and algebraic $ K$-theory (Princeton, N.J., 1983), 365-391 MR 921485 (89c:57044)
  • 8. Y. Eliashberg and N. M. Mishachev, Wrinkling of smooth mappings and its applications. I, Invent. math. 130, 345-369 (Springer-Verlag 1997) MR 1474161 (99d:57021)
  • 9. Y. Eliashberg and N. M. Mishachev, Wrinkling of smooth mappings-II Wrinkling of embeddings and K.Igusa's theorem, Topology 39 (2000) 711-732 MR 1760426 (2001g:57058)
  • 10. P. Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5, no. 3 (1987) 179-191. MR 962295 (89m:53061)
  • 11. S. Goette, Morse Theory and higher torsion invariants I Preprint, arXiv:math.DG/0111222
  • 12. M. Gromov and H. B. Lawson, Jr., The classification of simply-connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), 423-434. MR 577131 (81h:53036)
  • 13. M. Gromov and H. B. Lawson, Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.E.S., no. 58 (1983), 83-196 . MR 720933 (85g:58082)
  • 14. M. W. Hirsch, Differential Topology, Springer (1980) MR 0448362 (56:6669)
  • 15. N. Hitchin, Harmonic spinors, Adv. in Math., 14 (1974), 1-55. MR 0358873 (50:11332)
  • 16. K. Igusa, Higher Franz-Reidemeister Torsion, AMS/IP, Studies in Advanced Mathematics, Vol. 31, (2002). MR 1945530 (2004f:19003)
  • 17. K. Igusa, Higher singularities of smooth functions are unnecessary, Annals of Mathematics, 2nd Ser., Vol. 119, No.1 (Jan., 1984), pp 1-58. MR 736559 (85k:57034)
  • 18. K. Igusa, On the homotopy type of the space of generalized Morse functions, Topology 23 (1984), 245-256. MR 744854 (86m:57034)
  • 19. K. Igusa, The space of framed functions, Trans. A.M.S. 301, no. 2, June 1987, 431-437 MR 882699 (88g:57034)
  • 20. K. Igusa, The stability theorem for smooth pseudoisotopies, K-Theory 2 (1988) 1-355 MR 972368 (90d:57035)
  • 21. A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci Paris, Ser. A-B 257 (1963), 7-9. MR 0156292 (27:6218)
  • 22. J. Milnor, Lectures on the h-Cobordism Theorem, Princeton Univ. Press (1965). MR 0190942 (32:8352)
  • 23. J. Milnor, Morse Theory, Princeton Univ. Press (1963). MR 0163331 (29:634)
  • 24. P. Peterson, Riemannian Geometry 2nd Edition, Springer (1998). MR 2243772 (2007a:53001)
  • 25. J. Rosenberg and S. Stolz, Metrics of positive scalar curvature and connections with surgery, Surveys on Surgery Theory, Vol. 2, Ann. of Math. Studies 149, Princeton Univ. Press, 2001. MR 1818778 (2002f:53054)
  • 26. D. Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants. Geom. Topol. 5 (2001), 895-924 MR 1874146 (2002k:57076)
  • 27. R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), 159-183. MR 535700 (80k:53064)
  • 28. S. Stolz, Simply connected manifolds with positive scalar curvature, Ann. of Math., 2nd Series 136, no. 3 (1979), 511-540. MR 1189863 (93i:57033)
  • 29. S. Stolz, Concordance classes of positive scalar curvature metrics, University of Notre Dame Preprint, http://www.nd.edu/ stolz/preprint.html
  • 30. M. Walsh, Metrics of positive scalar curvature and generalised Morse functions, Part I, Memoirs of the American Mathematical Society. Volume 209, No. 983, January 2011 MR 2789750 (2012c:53049)
  • 31. M. Walsh, Metrics of positive scalar curvature and generalised Morse functions, PhD Thesis, University of Oregon 2009 MR 2713772

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C21, 57R45, 57R65, 58D17

Retrieve articles in all journals with MSC (2010): 53C21, 57R45, 57R65, 58D17


Additional Information

Mark Walsh
Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
Address at time of publication: Department of Mathematics, Statistics and Physics, Wichita State University, Wichita, Kansas 67260
Email: walsh@math.wichita.edu

DOI: https://doi.org/10.1090/S0002-9947-2013-05715-7
Received by editor(s): July 18, 2011
Published electronically: September 4, 2013
Dedicated: Dedicated to Michael J. Walsh
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society