Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Degenerations of K3 surfaces of degree two


Author: Alan Thompson
Journal: Trans. Amer. Math. Soc. 366 (2014), 219-243
MSC (2010): Primary 14D06, 14J28; Secondary 14E30
DOI: https://doi.org/10.1090/S0002-9947-2013-05759-5
Published electronically: May 13, 2013
MathSciNet review: 3118396
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a semistable degeneration of K3 surfaces equipped with an effective divisor that defines a polarisation of degree two on a general fibre. We show that the map to the relative log canonical model of the degeneration maps every fibre to either a sextic hypersurface in $ \mathbb{P}(1,1,1,3)$ or a complete intersection of degree $ (2,6)$ in $ \mathbb{P}(1,1,1,2,3)$. Furthermore, we find an explicit description of the hypersurfaces and complete intersections that can arise, thereby giving a full classification of the possible singular fibres.


References [Enhancements On Off] (What's this?)

  • 1. V. Ancona, Vanishing and nonvanishing theorems for numerically effective line bundles on complex spaces, Ann. Mat. Pura Appl. (4) 149 (1987), 153-164. MR 932782 (89h:32058)
  • 2. V. I. Arnold, Local normal forms of functions, Invent. Math. 35 (1976), no. 1, 87-109. MR 0467795 (57:7646)
  • 3. A. Beauville, Complex algebraic surfaces, second ed., London Mathematical Society Student Texts, vol. 34, Cambridge University Press, 1996. MR 1406314 (97e:14045)
  • 4. F. Catanese and R. Pignatelli, Fibrations of low genus I, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 1011-1049. MR 2316980 (2008g:14014)
  • 5. R. Friedman, Linear systems on anticanonical pairs, The birational geometry of degenerations (R. Friedman and D. Morrison, eds.), Progr. Math., no. 29, Birkhäuser, 1983, pp. 162-171.
  • 6. -, A new proof of the global Torelli theorem for K3 surfaces, Ann. of Math. (2) 120 (1984), no. 2, 237-269. MR 763907 (86k:14028)
  • 7. R. Friedman and D. Morrison, The birational geometry of degenerations: An overview, The Birational Geometry of Degenerations (R. Friedman and D. Morrison, eds.), Progr. Math., no. 29, Birkhäuser, 1983, pp. 1-32. MR 690262 (84g:14032)
  • 8. G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings I, Lecture Notes in Mathematics, vol. 339, Springer-Verlag, 1973. MR 0335518 (49:299)
  • 9. J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, 1998. MR 1658959 (2000b:14018)
  • 10. J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299-338. MR 922803 (88m:14022)
  • 11. V. Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Math. USSR Izvestija 11 (1977), no. 5, 957-989.
  • 12. -, On modifications of degenerations of surfaces with $ \kappa = 0$, Math. USSR Izvestija 17 (1981), no. 2, 339-342.
  • 13. H. B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 1257-1295. MR 0568898 (58:27961)
  • 14. A. L. Mayer, Families of K3 surfaces, Nagoya Math. J. 48 (1972), 1-17. MR 0330172 (48:8510)
  • 15. M. Mendes-Lopes, The relative canonical algebra for genus three fibrations, Ph.D. thesis, University of Warwick, 1989.
  • 16. D. Mumford, J. Fogarty, and F. C. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Fogle, vol. 34, Springer-Verlag, 1994. MR 719371 (86a:14006)
  • 17. U. Persson, On degenerations of algebraic surfaces, Mem. Amer. Math. Soc. 11 (1977), no. 189. MR 0466149 (57:6030)
  • 18. U. Persson and H. Pinkham, Degenerations of surfaces with trivial canonical bundle, Ann. of Math. (2) 113 (1981), no. 1, 45-66. MR 604042 (82f:14030)
  • 19. K. Saito, Einfach-elliptishce singularitäten, Invent. Math. 23 (1974), 289-325. MR 0354669 (50:7147)
  • 20. J. Shah, A complete moduli space for K3 surfaces of degree 2, Ann. of Math. (2) 112 (1980), no. 3, 485-510. MR 595204 (82j:14030)
  • 21. N. Shepherd-Barron, Degenerations with numerically effective canonical divisor, The Birational Geometry of Degenerations (R. Friedman and D. Morrison, eds.), Progr. Math., no. 29, Birkhäuser, 1983, pp. 33-84. MR 690263 (85f:14034)
  • 22. -, Extending polarisations on families of K3 surfaces, The Birational Geometry of Degenerations (R. Friedman and D. Morrison, eds.), Progr. Math., no. 29, Birkhäuser, 1983, pp. 135-161. MR 690265 (84m:14040)
  • 23. A. Thompson, Explicit models for threefolds fibred by K3 surfaces of degree two, Canadian Journal of Mathematics. Published electronically on September 21, 2012. https://doi.org:10.4153/CJM-2012-037-2.
  • 24. -, Models for threefolds fibred by K3 surfaces of degree two, Ph.D. thesis, University of Oxford, 2011.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14D06, 14J28, 14E30

Retrieve articles in all journals with MSC (2010): 14D06, 14J28, 14E30


Additional Information

Alan Thompson
Affiliation: Mathematical Institute, University of Oxford, Oxford, OX1 3LB, United Kingdom
Address at time of publication: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: amthomps@ualberta.ca

DOI: https://doi.org/10.1090/S0002-9947-2013-05759-5
Received by editor(s): January 19, 2011
Received by editor(s) in revised form: August 15, 2011, and November 9, 2011
Published electronically: May 13, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society