Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The nonlinear heat equation with high order mixed derivatives of the Dirac delta as initial values

Authors: Slim Tayachi and Fred B. Weissler
Journal: Trans. Amer. Math. Soc. 366 (2014), 505-530
MSC (2010): Primary 35K55, 35A01, 35B44; Secondary 35K57, 35C15
Published electronically: July 16, 2013
MathSciNet review: 3118404
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove local existence of solutions of the nonlinear heat equation $ u_t = \Delta u + \vert u\vert^\alpha u, \; t\in (0,T),\; x\in \mathbb{R}^N,$ with initial value $ u(0)=K\partial _{1}\partial _{2}\cdot \cdot \cdot \partial _{m}\delta ,\; K\not =0,\; m\in \{1,\; 2,\; \cdots ,\; N\},\; 0<\alpha <2/(N+m)$ and $ \delta $ is the Dirac distribution. In particular, this gives a local existence result with an initial value in a high order negative Sobolev space $ H^{s,q}(\mathbb{R}^N)$ with $ s\leq -2.$

As an application, we prove the existence of initial values $ u_0 = \lambda f$ for which the resulting solution blows up in finite time if $ \lambda >0$ is sufficiently small. Here, $ f$ satisfies in particular $ f\in C_0(\mathbb{R}^N)\cap L^1(\mathbb{R}^N)$ and is anti-symmetric with respect to $ x_1,\; x_2,\; \cdots ,\; x_m.$ Moreover, we require $ \int _{\mathbb{R}^N} x_1\cdots x_mf(x) dx\not =0$. This extends the known ``small lambda'' blow up results which require either that $ \int _{\mathbb{R}^N}f(x) dx\not =0$ (Dickstein (2006)) or $ \int _{\mathbb{R}^N} x_1f(x) dx\not =0$ (Ghoul (2011), (2012)).

References [Enhancements On Off] (What's this?)

  • 1. C. Bandle and H. A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Transactions of the American Math. Soc., 316 (1989), 595-622. MR 937878 (90c:35118)
  • 2. J. Bergh and J. Löfström, ``Interpolation Spaces'' Springer, Berlin, 1976. MR 0482275 (58:2349)
  • 3. T. Cazenave, F. Dickstein and F. B. Weissler, Global existence and blow up for sign-changing solutions of the nonlinear heat equation, J. Differential Equations 246 (2009) 2669-2680. MR 2503017 (2010d:35198)
  • 4. F. Dickstein, Blowup stability of solutions of the nonlinear heat equation with a large life span, J. Differential Equations 223 (2006), 303-328. MR 2214937 (2007a:35064)
  • 5. C. Fermanian Kammerer, F. Merle and H. Zaag, Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view, Math. Ann. , 317 (2000), 347-387. MR 1764243 (2001d:35088)
  • 6. H. Fujita, On the blowing up of solutions of the Cauchy problem for $ u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. MR 0214914 (35:5761)
  • 7. T. Ghoul, An extension of Dickstein's ``small lambda'' theorem for finite time blowup, Nonlinear Analysis, T.M.A., 74 (2011), 6105-6115. MR 2833380 (2012h:35183)
  • 8. T. Ghoul, Global existence for the nonlinear heat equation in the Fujita subcritical case with initial value having zero mean value, J. Math. Anal. Appl., 389 (2012), 562-568. MR 2876521
  • 9. Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514. MR 2060042 (2005g:35153)
  • 10. Y. Giga, S. Matsui and S. Sasayama, On blow up rate for sign-changing solutions in a convex domain, Math. Methods Appl. Sci., 27 (2004), 1771-1782. MR 2087296 (2005g:35154)
  • 11. R. Ikehataa, M. Ishiwata and T. Suzuki, Semilinear parabolic equation in $ \mathbb{R}^N$ associated with critical Sobolev exponent, Ann. I. H. Poincaré, Anal. non linéaire, 27 (2010), 877-900. MR 2629884 (2011j:35125)
  • 12. T. Kato, ``Perturbation Theory for Linear Operators'', Springer-Verlag, New York, 1966. MR 0203473 (34:3324)
  • 13. O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. I. H. Poincaré, Anal. non linéaire, 4 (1987), 423-452. MR 921547 (89b:35013)
  • 14. H. A. Levine, Some nonexistence and instability theorems for formally parabolic equations of the form $ Pu_t = -Au + f(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371-386. MR 0348216 (50:714)
  • 15. H. A. Levine and P. Meier, The value of the critical exponent for reaction-diffusion equations in cones, Arch. Ration. Mech. Anal., 109 (1990), 73-80. MR 1019170 (90k:35039)
  • 16. P. Meier, Blow-up of solutions of semilinear parabolic differential equations, Journal of Applied Mathematics and Physics (ZAMP), 39 (1988), 135-149. MR 937698 (90h:35037)
  • 17. P. Quittner and Ph. Souplet, ``Blow-up, Global Existence and Steady States'', Birkhäuser, Basel, 2007. MR 2346798 (2008f:35001)
  • 18. F. Ribaud, Semilinear parabolic equations with distributions as initial values, Discrete Contin. Dynam. Systems 3 (1997), 305-316. MR 1444196 (97m:35127)
  • 19. E. M. Stein, ``Topics in Harmonic Analysis Related to the Littlewood-Paley Theory'', Ann. Math. Studies 63, Princeton University Press, Princeton, NJ, 1970. MR 0252961 (40:6176)
  • 20. F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Functional Analysis 32 (1979), 277-296. MR 538855 (80i:47091)
  • 21. F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $ L^p$, Indiana Univ. Math. J., 29 (1980), 79-102. MR 554819 (81c:35072)
  • 22. F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40. MR 599472 (82g:35059)
  • 23. F. B. Weissler, Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations, Arch. Rach. Mech. Anal., 91 (1985), 247-266. MR 806004 (87h:35164b)
  • 24. R. C. Weissler, personal communication.
  • 25. J. Wu, Well-posedness of a semilinear heat equation with weak initial data, Jnl. Fourier Anal. Appl., 4 (1998), 629-642. MR 1658660 (99m:35112)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35K55, 35A01, 35B44, 35K57, 35C15

Retrieve articles in all journals with MSC (2010): 35K55, 35A01, 35B44, 35K57, 35C15

Additional Information

Slim Tayachi
Affiliation: Department of Mathematics, Faculty of Science of Tunis, University Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia

Fred B. Weissler
Affiliation: Université Paris 13, Sorbonne Paris Cité, CNRS UMR 7539 LAGA, 99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Keywords: Nonlinear heat equation, highly singular initial values, finite time blow--up.
Received by editor(s): November 21, 2011
Received by editor(s) in revised form: May 29, 2012
Published electronically: July 16, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society