Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 


Kähler-Ricci flow on projective bundles over Kähler-Einstein manifolds

Author: Frederick Tsz-Ho Fong
Journal: Trans. Amer. Math. Soc. 366 (2014), 563-589
MSC (2010): Primary 53C44, 53C55; Secondary 55R25
Published electronically: August 14, 2013
MathSciNet review: 3130308
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Kähler-Ricci flow on a class of projective bundles $ \mathbb{P}(\mathcal {O}_\Sigma \oplus L)$ over the compact Kähler-Einstein manifold $ \Sigma ^n$. Assuming the initial Kähler metric $ \omega _0$ admits a $ U(1)$-invariant momentum profile, we give a criterion, characterized by the triple $ (\Sigma , L, [\omega _0])$, under which the $ \mathbb{P}^1$-fiber collapses along the Kähler-Ricci flow and the projective bundle converges to $ \Sigma $ in the Gromov-Hausdorff sense. Furthermore, the Kähler-Ricci flow must have Type I singularity and is of $ (\mathbb{C}^n \times \mathbb{P}^1)$-type. This generalizes and extends part of Song-Weinkove's work on Hirzebruch surfaces.

References [Enhancements On Off] (What's this?)

  • [ACGT] Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W. Tønnesen-Friedman, Extremal Kähler metrics on ruled manifolds and stability, Astérisque (2008), no. 322, 93-150, Géométrie différentielle, physique mathématique, mathématiques et société. II.
  • [A] T. Aubin, Equations du type Monge-Ampére sur les Variétés Kählériennes, Compactes, C. R. Acad. Sci. Paris (1976), no. 283. MR 0433520 (55:6496)
  • [BS] Simon Brendle and Richard Schoen, Manifolds with $ 1/4$-pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009), no. 1, 287-307. MR 2449060 (2010a:53045)
  • [C] Eugenio Calabi, Extremal Kähler metrics, Seminar on Diff. Geom. Ann. of Math. Stud. 102 (1982), 259-290. MR 645743 (83i:53088)
  • [Cao1] Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359-372. MR 799272 (87d:58051)
  • [Cao2] Huai-Dong Cao, Existence of gradient Kähler-Ricci solitons, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, MA, 1996, pp. 1-16. MR 1417944 (98a:53058)
  • [CCG] Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs, vol. 135, American Mathematical Society, Providence, RI, 2007, Geometric aspects. MR 2302600 (2008f:53088)
  • [CLN] Bennett Chow, Peng Lu, and Lei Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, vol. 77, American Mathematical Society, Providence, RI, 2006. MR 2274812 (2008a:53068)
  • [CY] Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507-544. MR 575736 (82f:53074)
  • [CZ] Huai-Dong Cao and Xi-Ping Zhu, Hamilton-Perelman's Proof of the Poincaré Conjecture and the Geometrization Conjecture, Asian J. Math. 10 (2006), no. 2, 165-492. MR 2233789 (2008d:53090)
  • [DW] Andrew S. Dancer and McKenzie Y. Wang, On Ricci solitons of cohomogeneity one, Ann. Global Anal. Geom. 39 (2011), no. 3, 259-292. MR 2769300
  • [FIK] M. Feldman, T. Ilmanen, and D. Knopf, Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, Journal of Differential Geometry 65 (2003), no. 2, 169-209. MR 2058261 (2005e:53102)
  • [GH] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., New York, 1994, Reprint of the 1978 original. MR 1288523 (95d:14001)
  • [GZ] Hui-Ling Gu and Xi-Ping Zhu, The existence of type II singularities for the Ricci flow on $ S^{n+1}$, Comm. Anal. Geom., 16 (2008), no. 3, 467-494. MR 2429966 (2009k:53169)
  • [H1] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. MR 664497 (84a:53050)
  • [H2] -, Eternal solutions to the Ricci flow, J. Differential Geom. 38 (1993), no. 1, 1-11. MR 1231700 (94g:58043)
  • [H3] -, The formation of singularities in the Ricci flow, Surveys in Diff. Geom., 2 (1995), 7-136. MR 1375255 (97e:53075)
  • [HS] Andrew D. Hwang and Michael A. Singer, A momentum construction for circle-invariant Kähler metrics, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2285-2325 (electronic). MR 1885653 (2002m:53057)
  • [KL] Bruce Kleiner and John Lott, Notes on Perelman's papers, Geom. Topol. 12 (2008), no. 5, 2587-2855. MR 2460872 (2010h:53098)
  • [Koi] Norihito Koiso, On rotationally symmetric Hamilton's equation for Kähler-Einstein metrics, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 327-337. MR 1145263 (93d:53057)
  • [Li] Chi Li, On rotationally symmetric Kahler-Ricci solitons, Apr 2010, arxiv:1004.4049
  • [MT] John W. Morgan and Gang Tian, Ricci flow and the Poincare Conjecture, Clay Math. Monographs, 3 (2007), American Math. Soc. MR 2334563 (2008d:57020)
  • [Mum] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, 1970. MR 0282985 (44:219)
  • [P1] Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, November 2002, arxiv:math/0211159
  • [P2] -, Ricci flow with surgery on three-manifolds, March 2003, arixv:math/0307245
  • [P3] -, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, July 2003, arxiv:math/0307245
  • [Shi] Wan-Xiong Shi, Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geom. 30 (1989), no. 2, 303-394. MR 1010165 (90f:53080)
  • [SSW] Jian Song, Gábor Székelyhidi, and Ben Weinkove, The Kähler-Ricci flow on projective bundles, July 2011, arxiv:1107.2144
  • [ST1] Jian Song and Gang Tian, The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math., 170 (2007), no. 3, 609-653. MR 2357504 (2008m:32044)
  • [ST2] Natasa Sesum and Gang Tian, Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman), J. Inst. Math. Jussieu 7 (2008), no. 3, 575-587. MR 2427424 (2009c:53092)
  • [ST3] Jian Song and Gang Tian, The Kähler-Ricci flow through singularities, Sep. 2009, arxiv:0909.4898
  • [SW1] Jian Song and Ben Weinkove, The Kähler-Ricci flow on Hirzebruch surfaces, to appear in J. Reine Angew. Math, arxiv:0903.1900
  • [SW2] -, Contracting exceptional divisors by the Kähler-Ricci flow, Mar. 2010, arxiv:1003.0718
  • [SW3] -, Contracting exceptional divisors by the Kähler-Ricci flow II, Feb. 2011, arxiv:1102.1759
  • [T] -, New results and problems on Kähler-Ricci flow, Astérisque, Géométrie différentielle, physique mathématique, mathématiques et société. II (2008), no. 322, 71-92.
  • [TZ] Gang Tian and Zhou Zhang, On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179-192. MR 2243679 (2007c:32029)
  • [Yg] Bo Yang, A characterization of Koiso's type solitons, Feb 2008, arxiv:0802.0300
  • [Y] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math (1978), no. 31, 339-411. MR 480350 (81d:53045)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C44, 53C55, 55R25

Retrieve articles in all journals with MSC (2010): 53C44, 53C55, 55R25

Additional Information

Frederick Tsz-Ho Fong
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
Address at time of publication: Department of Mathematics, Brown University, 151 Thayer Street, Box 1917, Providence, Rhode Island 02912

Keywords: K\"ahler-Ricci flow, singularity analysis, projective bundles
Received by editor(s): April 13, 2011
Received by editor(s) in revised form: September 30, 2011, and October 12, 2011
Published electronically: August 14, 2013
Additional Notes: The author was supported in part by NSF Grant DMS-#0604960.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society