Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Some results and open questions on spaceability in function spaces

Authors: Per H. Enflo, Vladimir I. Gurariy and Juan B. Seoane-Sepúlveda
Journal: Trans. Amer. Math. Soc. 366 (2014), 611-625
MSC (2010): Primary 15A03, 26A15, 46E15
Published electronically: July 26, 2013
MathSciNet review: 3130310
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A subset $ M$ of a topological vector space $ X$ is called lineable (respectively, spaceable) in $ X$ if there exists an infinite dimensional linear space (respectively, an infinite dimensional closed linear space) $ Y \subset M\cup \{0\}$. In this article we prove that, for every infinite dimensional closed subspace $ X$ of $ \mathcal {C}[0,1]$, the set of functions in $ X$ having infinitely many zeros in $ [0,1]$ is spaceable in $ X$. We discuss problems related to these concepts for certain subsets of some important classes of Banach spaces (such as $ \mathcal {C}[0,1]$ or Müntz spaces). We also propose several open questions in the field and study the properties of a new concept that we call the oscillating spectrum of subspaces of $ \mathcal {C}[0,1]$, as well as oscillating and annulling properties of subspaces of $ \mathcal {C}[0,1]$.

References [Enhancements On Off] (What's this?)

  • [1] R. M. Aron, D. García, and M. Maestre, Linearity in non-linear problems, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), no. 1, 7-12. MR 1899348 (2003b:46062)
  • [2] Richard Aron, Raquel Gonzalo, and Andriy Zagorodnyuk, Zeros of real polynomials, Linear and Multilinear Algebra 48 (2000), no. 2, 107-115. MR 1813438 (2001k:12002)
  • [3] R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on $ \mathbb{R}$, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795-803. MR 2113929 (2006i:26004)
  • [4] R. M. Aron, D. Pérez-García, and J. B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier series, Studia Math. 175 (2006), no. 1, 83-90. MR 2261701 (2007k:42007)
  • [5] R. M. Aron and J. B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on $ \mathbb{C}$, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25-31. MR 2327324 (2008d:26016)
  • [6] Stefan Banach, A course of functional analysis (1948).
  • [7] Nilson C. Bernardes Jr., On the dynamics of homeomorphisms on the unit ball of $ \mathbb{R}^n$, Positivity 3 (1999), no. 2, 149-172. MR 1702645 (2000g:37018)
  • [8] G. Botelho, D. Diniz, and D. Pellegrino, Lineability of the set of bounded linear non-absolutely summing operators, J. Math. Anal. Appl. 357 (2009), no. 1, 171-175. MR 2526816 (2010d:47025)
  • [9] J. A. Clarkson and P. Erdös, Approximation by polynomials, Duke Math. J. 10 (1943), 5-11. MR 0007813 (4:196e)
  • [10] V. P. Fonf, V. I. Gurariy, and M. I. Kadets, An infinite dimensional subspace of $ C[0,1]$ consisting of nowhere differentiable functions, C. R. Acad. Bulgare Sci. 52 (1999), no. 11-12, 13-16. MR 1738120 (2000j:26006)
  • [11] J. L. Gámez-Merino, G. A. Muñoz-Fernández, V. M. Sánchez, and J. B. Seoane-Sepúlveda, Sierpiński-Zygmund functions and other problems on lineability, Proc. Amer. Math. Soc. 138 (2010), no. 11, 3863-3876. MR 2679609 (2011g:46042)
  • [12] J. L. Gámez-Merino, G. A. Muñoz-Fernández, and J. B. Seoane-Sepúlveda, Lineability and additivity in $ \mathbb{R}^\mathbb{R}$, J. Math. Anal. Appl. 369 (2010), no. 1, 265-272. MR 2643865 (2011h:46011)
  • [13] D. García, B.C. Grecu, M. Maestre, and J. B. Seoane-Sepúlveda, Infinite dimensional Banach spaces of functions with non-linear properties, Math. Nachr. 283 (2010), no. 5, 712-720. MR 2666300 (2011e:46041)
  • [14] F. J. García-Pacheco, C. Pérez-Eslava, and J. B. Seoane-Sepúlveda, Moduleability, algebraic structures, and non-linear properties, J. Math. Anal. Appl. 370 (2010), no. 1, 159-167. MR 2651137 (2011h:46012)
  • [15] M. M. Grinblium, Some theorems on bases in Banach spaces, C. R. (Doklady) Acad. Sci. URSS (N. S.) 31 (1941), 428-432.
  • [16] V. I. Gurariĭ, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167 (1966), 971-973 (Russian).
  • [17] V. I. Gurariĭ, Linear spaces composed of everywhere non-differentiable functions, C. R. Acad. Bulgare Sci. 44 (1991), no. 5, 13-16 (Russian).
  • [18] Vladimir I. Gurariy and Wolfgang Lusky, Geometry of Müntz spaces and related questions, Lecture Notes in Mathematics, vol. 1870, Springer-Verlag, Berlin, 2005. MR 2190706 (2007g:46027)
  • [19] V. I. Gurariy and L. Quarta, On lineability of sets of continuous functions, J. Math. Anal. Appl. 294 (2004), 62-72. MR 2059788 (2005c:46026)
  • [20] Stanislav Hencl, Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3505-3511. MR 1707147 (2001b:46026)
  • [21] M. G. Krein, D. P. Milman, and M. A. Rutman, On the stability of bases, Zapiski Mat. T. (Kharkov) 14 (1940), 106-110 (Russian).
  • [22] Gilles Lancien, A survey on the Szlenk index and some of its applications, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100 (2006), no. 1-2, 209-235 (English, with English and Spanish summaries). MR 2267410 (2008b:46022)
  • [23] B. Levine and D. Milman, On linear sets in space $ C$ consisting of functions of bounded variation, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16 (1940), 102-105 (Russian, with English summary). MR 0004712 (3:49g)
  • [24] Wolfgang Lusky, A note on interpolating bases, J. Approx. Theory 52 (1988), no. 1, 107-118. MR 922596 (89a:41041)
  • [25] E. Michael and A. Pełczyński, Separable Banach spaces which admit $ l_{n}^{\infty }$ approximations, Israel J. Math. 4 (1966), 189-198. MR 0211247 (35:2129)
  • [26] A. A. Milutin, Isomorphisms of the spaces of continuous functions over compact sets of cardinality of the continuum, Teor. Funkciĭ Funkcional Anal, i Priložen. 2 (1966), 150-156.
  • [27] C. Müntz, Über den Approximationsatz von Weierstrass, Berlin, 1914.
  • [28] L. Rodríguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3649-3654. MR 1328375 (96d:46007)
  • [29] Juan B. Seoane-Sepúlveda, Chaos and lineability of pathological phenomena in analysis, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)-Kent State University. MR 2709064
  • [30] Laurent Schwartz, Étude des sommes d'exponentielles. 2ième éd, Publications de l'Institut de Mathématique de l'Université de Strasbourg, V. Actualités Sci. Ind., Hermann, Paris, 1959 (French). MR 0106383 (21:5116)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 15A03, 26A15, 46E15

Retrieve articles in all journals with MSC (2010): 15A03, 26A15, 46E15

Additional Information

Per H. Enflo
Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242

Vladimir I. Gurariy
Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242

Juan B. Seoane-Sepúlveda
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid, 28040, Spain

Keywords: Lineability, spaceability, subspaces of continuous functions, zeros of functions, M\"untz spaces
Received by editor(s): July 15, 2011
Received by editor(s) in revised form: October 20, 2011
Published electronically: July 26, 2013
Additional Notes: The second author was supported by the Spanish Ministry of Science and Innovation, grant MTM2009-07848.
Dedicated: This work was completed after the passing of the second author. The first and third authors wish to dedicate this article to the loving memory of their friend and colleague, Vladimir I. Gurariy (1935-2005).
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society