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A STOCHASTIC EVANS-ARONSSON PROBLEM

DIOGO GOMES AND HÉCTOR SÁNCHEZ MORGADO

Abstract. In this paper the stochastic version of the Evans-Aronsson prob-
lem is studied. Both for the mechanical case and two dimensional problems
we prove the existence of smooth solutions. We establish that the correspond-
ing effective Lagrangian and Hamiltonian are smooth. We study the limiting
behavior and the convergence of the effective Lagrangian and Hamiltonian,
Mather measures and minimizers. We end the paper with applications to
stationary mean-field games.

1. Introduction

Given a Hamiltonian H : Td × R
d → R, P ∈ R

d, and ε1, ε2 ≥ 0, the stochas-
tic Evans-Aronsson problem consists in determining a solution uε of the following
variational problem:

(1) H̄ε(P ) = ε1 log inf
φ

∫
e

ε2Δφ+H(x,P+Dφ)
ε1 dx.

This problem was first considered in [W] as a generalization of the Evans-Aronsson
problem in [E1]; see also [E2]. Unfortunately, some results of that paper depend on
certain a priori bounds which are not completely clear. In fact, due to the second-
order terms this variational problem is non-coercive and entails several technical
difficulties which we believe were not addressed in that paper. We were able,
however, to obtain detailed proofs for the special case of quadratic Hamiltonians in
the momentum variable, as well as in dimensions 2 and 3.

Our original motivation was to completely understand the argument for the
existence of smooth solutions for the minimization problem (1). However, as a
result of our work we found an important connection between this class of problems
and mean-field games, which is of independent interest and is described in section
9.

For mechanical Hamiltonians as well as in the two and three dimensional cases we
establish the existence of smooth minimizers, smoothness of the effective Lagrangian
and Hamiltonian functions, generalizing the results in [I-SM]. Furthermore we study
the limiting behavior as ε → 0. For the original Evans-Aronsson problem and d = 1
the convergence of solutions and corresponding measures was studied in [GISMY].

Mean-field games is a new class of problems introduced by Lions and Lasry
[LL06a], [LL06b], [LL07a] and [LL07b] (see also [LLG10a], [LLG10b]), as well as
independently by P. Caines and his co-workers [HMC06], [HMC07], which addresses
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the behavior of individual rational agents in a large population. In addition to its
interest in the study of Mather measures and viscosity solutions of Hamilton-Jacobi
equations, these variational problems are also relevant in the study of stationary
mean-field games. In fact, the Euler-Lagrange equation corresponding to (1) can
be written as {

ε2Δu+H(x, P +Du) = ε1 lnm+ H̄ε(P ),

ε2Δm− div(DpHm) = 0,

which is an important example of a stationary mean-field game. In particular,
the a priori estimates we obtained in this paper correspond immediately to new
estimates for this mean-field game. In the case ε2 = 0 some of the estimates we
discuss in this paper were also proved in [E2].

The function H̄ε(P ) is related with the effective Hamiltonian H̄(P ) for first-order
Hamilton-Jacobi equations, which is the unique constant for which the equation

(2) H(x, P +Dϕ(x)) = H̄(P )

admits (periodic) viscosity solutions ϕ : Td → R. The constant H̄(P ) is given by
the min-max formula

(3) H̄(P ) = min
ψ∈C1(Td)

max
x

H(x,Dψ(x) + P ).

Formally, as ε → 0 we should have H̄ε → H̄ . A related problem, formally corre-
sponding to the case ε1 = 0, ε2 > 0, was studied in [G]. In particular

(4) Ȟε2(P ) = min
ψ∈C2

max
x

H(x,Dψ(x) + P ) + ε2Δψ(x)

is the unique number Ȟε2(P ) such that

(5) ε2Δϕ(x) +H(x,Dϕ(x) + P ) = Ȟε2(P )

admits viscosity (and also C2) solutions ϕε2 : Td → R. Moreover, the solution
of (5) is unique up to addition of constants. This problem was further studied in
[I-SM] where the differentiability properties of Ȟε2(P ) (also called the α function)
and its Legendre transform Ľε2 (also called the β function) were studied in detail.

As we will discuss in sections 2 and §3, the stochastic Evans-Aronsson problem
is the dual problem of the entropy penalized stochastic Mather problem, which
consists in minimizing ∫

Td×Rd

L(x, v)dμ+ ε1S[μ],

over all measures that satisfy a stochastic holonomy constraint:∫
Td×Rd

vDϕ+ ε2Δϕdμ(x, v) = 0,

for all ϕ ∈ C2(Td). Here L is the Legendre transform of H and S is a suitable
entropy functional.

For ε2 = 0 the minimization problem (1) is the Evans-Aronsson problem [E1],
[E2] of minimizing

(6)

∫
e

H(x,P+Dφ)
ε1 dx
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over all φ ∈ C1(Td). We define

Ĥε1(P ) = ε1 log inf
φ

∫
e

H(x,P+Dφ)
ε1 dx.

For d = 1 the convergence of minimizing ϕ and measure μ as ε1 → 0 was studied
in [GISMY]. Minimizing measures for ε1 = ε2 = 0 are called Mather measures.

In this paper we study the problem (1) for two classes of Hamiltonians. The first
case is the important mechanical setting, that is,

L(x, v) =
|v|2
2

+ P · v − V (x),

to which there corresponds the Hamiltonian

(7) H(x, p) =
|P + p|2

2
+ V (x).

For this mechanical setting we have the following main result:

Theorem 1. Suppose H has the mechanical form (7). Then for each P there exists
a unique smooth minimizer u and a unique minimizing measure μ. This measure
is supported on the graph (x, P +Du). Furthermore u is the first component of the
unique solution of the system

(8)

{
ε2Δu+ 1

2 |P +Du|2 + V (x) = ε1
u−v
2ε2

,

−ε2Δv + 1
2 |P +Dv|2 + V (x) = ε1

u−v
2ε2

.

Additionally, if we define

mμ = Ce
u−v
2ε2 ,

where C is determined by the normalization condition
∫
Td mμ(x)dx = 1, we have∫

Td×Rd

ψ(x, v)dμ =

∫
Td

ψ(x, P +Du)mμ(x)dx.

The second case we study concerns general Hamiltonians that satisfy the follow-
ing hypothesis:

• H is uniformly convex:

(9) D2
ppH ≥ γ > 0;

• H has at most quadratic growth, i.e. there is a constant C such that

(10) |D2
ppH| ≤ C;

thus we have that
γ

2
|p|2 − C ≤ H(p, x) ≤ C|p|2 + C

and

|DpH|2 ≤ CH + C;

• the derivatives of H also satisfy

(11) |DxH|2 ≤ C + CH, |D2
xxH| ≤ C + CH and |D2

xpH|2 ≤ C + CH;
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• if L is the Legendre transform of H

L(x, v) = sup
v∈Rd

v · p−H(x, p)

we suppose further that

(12) L(x,DpH(x, p)) ≥ cH(x, p)− C.

Theorem 2. Suppose d ≤ 3 and H satisfies (9)-(12). Then (1) admits a smooth
minimizer.

We further establish smooth dependence on P :

Theorem 3. The generalized effective Lagrangian and Hamiltonian functions L̄ε,
H̄ε are smooth.

Finally we obtain the following convergence result:

Theorem 4. Suppose the Hamiltonian is either mechanical or d ≤ 3, under as-
sumptions (9)-(12). We suppose all limits as ε → (0, 0) are taken through any
sequence with ε1

ε2
bounded. Then

(1) We have
lim

ε→(0,0)
H̄ε(P ) = H̄(P ).

(2) There is u ∈ W 1,2 such that uε ⇀ u in W 1,2 . Moreover u is Lipschitz and

H(x, P +Du) ≤ H̄(P ).

(3) For mechanical Hamiltonians, if as ε → (0, 0) we also require ε1
ε2

→ 0, then
u is a viscosity solution of

H(x, P +Du) = H̄(P ).

(4) The Mather measure με converges to a Mather measure μ.

This paper is structured as follows: we start in section 2 to discuss a possible
motivation of the stochastic Evans-Aronsson problem, the entropy penalized sto-
chastic Mather measures. The connection between these two problems is made clear
in section 3 where we consider the dual problem. Then in section 4 we consider
mechanical Hamiltonians and, using a generalized Hopf-Cole transformation, give
an explicit characterization of the minimizing measures. Section 5 is dedicated to
several a priori bounds which in particular show the existence of minimizers for
general Hamiltonians in dimensions 2 and 3. Then we briefly discuss uniqueness
and convexity in section 6 and the smoothness properties in section 7. The conver-
gence as ε → 0 is addressed in section 8. We end the paper, in section 9, with a
discussion of the connection of this problem with a class of mean-field games.

2. Entropy penalized stochastic Mather measures

As mentioned in the introduction, the stochastic Evans-Aronsson problem (1) is
related through duality to a certain entropy penalized generalization of the Mather
problem. In this section we discuss the set up of this problem. The duality will be
considered in the following section.

Given a probability measure μ in T
d×R

d we define its push forward mμ through
the projection to T

d by

(13)

∫
Td

ϕ(x)dmμ(x) =

∫
Td×Rd

ϕ(x)dμ(x, v).
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In the set A of probability measures m absolutely continuous with respect to the
Lebesgue measure in T

d (which we identify as usual with [0, 1]d) the mapping

m �→
∫
Td

logm(x)dm(x) ≡ S∗[m]

is convex and lower semicontinuous. This mapping can be extended in a unique way
as a convex lower semicontinuous mapping to the set of all probability measures on
T
d by

S̄[m] = lim inf
mn∈A,mn⇀m

S∗[mn].

Note that the map S̄ is allowed to take the value +∞. Furthermore, since z ln z ≥
−1/e, we have S̄ ≥ −1/e. Finally define S[μ] = S̄[mμ].

Let L(x, v) : Td × R
d → R be a smooth function, bounded from below, strictly

convex in v and with superlinear growth, i.e., we assume that there is a function
γ : R+ → [1,+∞) such that

L(x, v)

γ(|v|) → +∞,
γ(|v|)
|v| → +∞,

as |v| → +∞. For ε1 ≥ 0, we consider the convex lower semicontinuous functional

(14) AL(μ) =

∫
Td×Rd

L(x, v)dμ+ ε1S[μ],

defined on the space of Borel probability measures μ in T
d × R

d. Given ε2 ≥ 0,
the entropy penalized stochastic Mather problem consists in minimizing (14) over
all Borel probability measures μ which satisfy the following stochastic holonomy
constraint: for all ϕ ∈ C2(Td),

(15)

∫
Td×Rd

(Dϕ(x)v + ε2Δϕ(x))dμ = 0.

The original Mather problem [Ma], [M] corresponds to ε1 = ε2 = 0. Measures
for which (15) holds are called stochastic holonomic (or simply stochastic) for the
following reason: consider a controlled Markov diffusion

dX = vdt+ σdW,

whereW (t) is a d-dimensional Brownian motion on some probability space (Ω,F, P ),
and v(t) is a bounded progressively measurable (with respect to the filtration gen-
erated by the Brownian motion) control taking values in R

d. Define a measure μT

on T
d × R

d by ∫
Td×Rd

φdμT =
1

T
E

[∫ T

0

φ(X(t), v(t))dt

]
,

for φ ∈ Cc(T
d×R

d). If μ is a weak limit of a sequence μTn
, Tn → ∞, using Dynkin’s

formula we have that μ satisfies (15) with ε2 = σ2

2 .
When ε2 = 0, the non-stochastic case, (15) is Mañe’s holonomic condition. The

previous fact is the analogue to weak limits of measures supported in liftings of
closed curves being holonomic. According to the results of Mather [Ma] and Mañé
[M], for the case where ε1 = ε2 = 0, holonomic minimizing measures are invariant
under the Euler-Lagrange flow. In this classical setting an important role is played
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by viscosity solutions of Hamilton-Jacobi equations. Indeed, if μ is a minimizing
holonomic measure, then ∫

Td×Rd

Ldμ = −H̄(0),

and a similar identity holds for the stochastic ε2 > 0, non-entropy penalized (ε1 = 0)
problem [G].

Before we proceed, we need to set up additional notation. Denote by Cγ
0 the set

of continuous functions on T
d × R

d which satisfy

φ(x, v)

γ(|v|) → 0,

as |v| → +∞. Cγ
0 is a Banach space under the norm

‖φ‖Cγ
0
= sup

x,v

|φ(x, v)|
γ(|v|) .

Let M be the space of Borel probability measures on T
d × R

d satisfying∫
γ(|v|)dμ < ∞.

This set can be identified with the dual of Cγ
0 and thus endowed with the weak

topology. Set

Nε2 = cl

{
μ ∈ M :

∫
(ε2Δφ(x) +Dφ(x)v)dμ = 0, ∀φ ∈ C2(Td)

}
.

Given an element [ω] ∈ H1(T
d,R) we identify every representative ω of [ω] with the

corresponding vector field. The adjoint δ of the exterior derivative d with respect
to the flat metric is simply the divergence operator.

Define ρ : Nε2 → H1(T
d,R) by

(16) 〈ρ(μ), [ω]〉 =
∫
(ε2 divω(x) + ω(x) · v)dμ.

It is an immediate consequence of the fact that μ belongs to Nε that the integral
in (16) does not depend on the representative of the cohomology class [ω]. Indeed
take ω̃ = ω +Dϕ for ϕ ∈ C2(Td). Then∫

(ε2 divω(x) + ω(x) · v)dμ−
∫
(ε2 div ω̃(x) + ω̃(x) · v)dμ

=

∫
(ε2Δϕ(x) +Dϕ(x)v)dμ = 0.

Thus, according to Poincaré duality, we can consider ρ(μ) as a homology class. The
map ρ is onto; see Lemma 2.1 in [I-SM].

We now define the generalized effective Lagrangian and Hamiltonian functions
for the stochastic version of the Evans-Aronsson problem.

The effective Lagrangian L̄ε : H1(T
d,R) → R is defined by

(17) L̄ε(Q) = inf{AL(μ) : μ ∈ Nε2 , ρ(μ) = Q}.

We will prove in Lemma 1 that L̄ε is convex and in Corollary 1 that its Legendre
transform H̄ε : H

1(Td,R) → R is given by (1).
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3. The dual problem

We now relate the problem of minimizing the functional (14) to the one of min-
imizing

(18)

∫
e

ε2Δφ(x)+H(x,Dφ)
ε1 dx,

over all functions φ ∈ C2(Td) with
∫
φ(x)dx = 0 (to simplify we have set P = 0 in

(1)).

Proposition 1. For any μ ∈ Nε2 and φ ∈ C2(Td) we have

(19) AL(μ) ≥ −ε1 log

∫
Td

e
ε2Δφ(x)+H(x,Dφ)

ε1 dx.

Proof. Let μ ∈ Nε2 and φ ∈ C2(Td). Let mμ be given by (13). We have∫
L(x, v)dμ =

∫
(L(x, v)−Dφ(x)v − ε2Δφ(x)) dμ

≥ −
∫

(ε2Δφ(x) +H(x,Dφ)) dmμ,

since, for all (x, v) ∈ T
d × R

d, L(x, v)−Dφ(x)v ≥ −H(Dφ(x), x). Define

a(m,φ) =

∫
(ε2Δφ(x) +H(x,Dφ)dm− ε1S̄[m]

for any Borel probability measure m in T
d. Then

AL(μ) ≥ −a(mμ, φ).

Let

λφ = ε1 log

∫
e

ε2Δφ(x)+H(x,Dφ)
ε1 dx

and

(20) mφ(x) = e
ε2Δφ(x)+H(x,Dφ)−λφ

ε1 .

Then a(mφ, φ) = λφ.
The convex function t �→ t log t has Legendre transform s �→ es−1. In particular

this implies that t log t + 1 ≥ t, and so, for any probability measure m in T
d

absolutely continuous with respect to Lebesgue measure, we obtain

a(m,φ) ≤ a(mφ, φ)

+

∫
(ε2Δφ(x) +H(x,Dφ)− ε1 logmφ − ε1)(m(x)−mφ(x))dx.

The convexity and an approximation argument shows that in fact the previous in-
equality holds for all measures not necessarily absolutely continuous with respect to
Lebesgue measure. From the definition of mφ, and since m and mφ are probability
measures, the second term on the rhs vanishes and then

λφ = sup
m

a(m,φ).

Therefore

(21) inf
μ

AL(μ) ≥ −ε1 log inf
φ

∫
e

ε2Δφ(x)+H(x,Dφ)
ε1 dx.

�
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Proposition 2. If the infimum Iε on the rhs of (21) is achieved at some function
ϕ ∈ C4(Td), then

(22) ε2Δmϕ − div(mϕDpH(x,Dϕ)) = 0.

Conversely, if (22) has a smooth solution ϕ, then

(23) με(x, v) = δ(v −DpH(x,Dϕ(x)))mϕ(x)dx

is a minimizer of (14).

Proof. Equation (22) is simply the Euler-Lagrange equation for the minimizers in
(21).

From definition (23) it follows that for all continuous functions F : Td×R
d → R

we have ∫
Td×Rd

F (x, v)dμε =

∫
Td

F (x,DpH(x,Dϕ(x)))mϕ(x)dx.

Then, by (22),

(24) AL(με) = −a(mϕ, ϕ) = −ε1 log

∫
e

ε2Δϕ(x)+H(x,Dϕ)
ε1 dx,

and so inequality (21) is in fact an equality. �

Corollary 1. The Legendre transform of L̄ε is H̄ε.

Proof. Because the Hamiltonian associated to the Lagrangian L(x, v) − Pv is
H(x, P + p) and (21) is an equality, we have that

sup
Q

PQ− L̄ε(Q) = − inf
μ∈Nε2

AL−〈P,·〉(μ) = ε1 log inf
φ

∫
e

ε2Δφ(x)+H(x,P+Dφ)
ε1 dx.

�

4. A Hopf-Cole type transform and existence of minimizers

In this section we address the minimization problem (1) for mechanical Hamil-
tonians of the form

H(x, p) =
|p|2
2

+ V (x),

where V is a smooth periodic function. Thanks to the special quadratic structure
we are able to use a generalized Hopf-Cole transformation which makes it possible to
prove existence of minimizers in any dimension. Similar Hopf-Cole transformations
were used, for instance, in [GISMY] and [Ge1], though the existence results in this
section, which are based on the a priori bound in Theorem 5 are, as far as we know,
new.

We start this section with the following elementary example: set ε1 = ε2 = 1.
Suppose H(p, x) = 1

2 |p|2 + V (x). Then, equation (22) is simply

(25) Δmϕ − div(mϕDϕ) = 0.

If we set mϕ = eϕ, we see that it is a solution, provided

eϕ = eΔϕ(x)+H(x,Dϕ).

Taking logarithms on both sides we see that

ϕ = Δϕ(x) +H(x,Dϕ).
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Of course, in general, m is not a probability measure, but because (25) is homoge-
neous m can be normalized appropriately, which amounts to adding a constant to
ϕ. This example motivates the generalized Hopf-Cole transformation, which will be
discussed in what follows, that makes it possible to address the case where P 
= 0.

For ε1, ε2 > 0 we consider the problem of minimizing

(26)

∫
Td

e
ε2Δu+

|P+Du|2
2

+V (x)

ε1 dx.

Let u be a smooth minimizer of (26) and m = e
ε2Δu+H(P+Du,x)

ε1 . As discussed in the
previous section, m solves the Euler-Lagrange equation

(27) ε2Δm− div((P +Du)m) = 0.

Proposition 3. Let u and v be periodic solutions to

(28)

{
ε2Δu+ 1

2 |P +Du|2 + V (x) = ε1
u−v
2ε2

,

−ε2Δv + 1
2 |P +Dv|2 + V (x) = ε1

u−v
2ε2

.

Then

m = e
u−v
2ε2

solves (27).

Proof. We have

ε2Δm = m

[
1

2
Δu− 1

2
Δv +

|Du−Dv|2
4ε2

]

= mΔu+
m

4ε2

[
|P +Du|2 − |P +Dv|2 + |Du−Dv|2

]
= (P +Du) ·Dm+mΔu = div((P +Du)m).

�

From the previous proposition we obtain the following lower bound:

Corollary 2. Let u and v be periodic solutions to (28). Then the difference
ε1
ε2
(u − v) is bounded from below; hence for fixed ε1, m is also bounded from be-

low.

Proof. By adding the two equations in (28) we conclude that

ε2Δ(u− v) +
|P +Du|2

2
+

|P +Dv|2
2

+ 2V (x) =
ε1
ε2

(u− v).

At a point of minimum of u− v we have Δ(u− v) ≥ 0 and so at this point we have

2V (x) ≤ ε1
ε2

(u− v).

Hence
inf

ε1
ε2

(u− v) ≥ 2 inf V (x).

�

We have the following L1 upper bound:

Corollary 3. Let u and v be periodic solutions to (28). Then ε1
2ε2

∫
u−v is bounded

from above by 1
2 |P |2 + supV (x).
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Proof. Because (u,m) solve the necessary conditions of optimality, they are mini-
mizers. Using u ≡ 0 in (26) we have∫

m ≤
∫

e
|P |2+2V (x)

2ε1 dx ≤ e
|P |2+2 supV (x)

2ε1 .

Consequently, from Jensen’s inequality we conclude that∫
u− v

2ε2
≤ |P |2 + 2 supV (x)

2ε1
.

�

We now prove a variant of the classical Bernstein estimate for this system which
gives

Theorem 5. Let u and v be periodic solutions to (28). Then

(29) sup |Du|+ |Dv| ≤ C + C
ε1
ε2

.

Proof. Differentiate both equations in (28) with respect to xi, and multiply, respec-
tively, the first equation by uxi

and the second by vxi
. This yields{

ε2uxi
Δuxi

+ uxi
(P +Du) ·Duxi

+ Vxi
(x)uxi

= ε1uxi

uxi
−vxi

2ε2
,

−ε2vxi
Δvxi

+ vxi
(P +Dv) ·Dvxi

+ Vxi
(x)vxi

= ε1vxi

uxi
−vxi

2ε2
,

which by adding over i and rearranging gives the following identities:{
ε2Δ

|Du|2
2 + (P +Du) ·D |Du|2

2 − ε2|D2u|2 +DV ·Du = ε1DuD(u−v)
2ε2

,

−ε2Δ
|Dv|2

2 + (P +Dv)D |Dv|2
2 + ε2|D2v|2 +DV ·Dv = ε1DvD(u−v)

2ε2
.

The first equation applied at a point of maximum of |Du|2 yields

−ε2|D2u|2 +DV ·Du ≥ ε1Du · D(u− v)

2ε2
.

Observing that

|Δu|2 ≤ d|D2u|2,
and using (28) we obtain∣∣∣ |P +Du|2

2
+ V (x)− ε1

u− v

2ε2

∣∣∣2 = ε22|Δu|2

≤ dε2DV ·Du− dε1
2

Du ·D(u− v).(30)

From Corollary 3 inf ε1
ε2
(u− v) is bounded by above and then

(31) sup
ε1
ε2

|u− v| ≤ C +
ε1
ε2

sup |D(u− v)|.

This, together with Corollary 2 and (30), implies that

(32) sup |Du|2 ≤ C + C(1 +
ε1
ε2

)(sup |Du|+ sup |Dv|).

Similarly, for the second equation we obtain

(33) sup |Dv|2 ≤ C + C(1 +
ε1
ε2

)(sup |Du|+ sup |Dv|).

Adding (32) and (33) yields (29). �
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Corollary 4. Let u and v be periodic solutions of (28). Then all Sobolev norms
Wm,p are bounded a priori, for m ≥ 0 and 1 ≤ p < ∞.

Proof. Because u and v are bounded from below and Lipschitz, they are bounded.
This then shows that Δu and Δv are in L∞ and so u, v ∈ W 2,p for all 1 < p < ∞.
Then |Du|2 and |Dv|2 belong to W 1,p for any 1 < p < ∞. Hence Δu and Δv are
in W 1,p, for all 1 < p < ∞. So u, v ∈ W 3,p for all 1 ≤ p < ∞. By iteration we get
the result for all Sobolev norms. �

We now address existence and uniqueness of minimizers and present the proof of
Theorem 1, which is based upon the previous a priori estimates and the continuation
method.

Proof. ConsiderHλ(x, p) =
1
2 |p+P |2+λV (x). For λ = 0, uλ

ε = 0 is a minimizer. We

claim that the set Λ of λ ∈ [0, 1] for which there exists a minimizer uλ
ε satisfying

the a priori bounds in Theorem 5 and Corollary 4 is simultaneously open and
closed. Then it is clear that we do have a minimizer. The proof that Λ is open is
a standard application of the implicit function theorem, since equation (22) is an
elliptic (fourth order) equation - this implicit function application will be described
in detail in section 7. To prove that Λ is closed, observe that if uλ

ε is a minimizer,
then

(34) fλ
ε =

1

ε1
[ε2Δuλ

ε +
1

2
|P +Duλ

ε |2 + λV (x)]

satisfies

(35) ε2(Δfλ
ε + |Dfλ

ε |2) = Δuλ
ε + (P +Duλ

ε )Dfλ
ε .

Let vλε = uλ
ε − 2ε2f

λ
ε ; from equations (34), (35)

1

2
|P +Dvλε |2 =

1

2
|P +Duλ

ε |2 − 2ε2(P +Duλ
ε )Dfλ

ε + 2ε22|Dfλ
ε |2

= ε1f
λ
ε − λV (x)− ε2Δuλ

ε + 2ε2(Δuλ
ε − ε2Δfλ

ε )

= ε1f
λ
ε − λV (x) + ε2Δvλε .

Thus uλ
ε and vλε solve (28) with V replaced by λV . By Corollary 4 all Sobolev

norms Wm,p of uλ
ε and vλε are uniformly bounded. So any convergent subsequence

of elements of Λ contains a further subsequence whose corresponding sequences
uλ
ε , v

λ
ε converge uniformly, along with all derivatives to a solution of (28) (with V

replaced by λV ). �

5. A priori bounds for the general case

In this section we discuss additional a priori bounds for the solutions of (22)
for non-mechanical Hamiltonians satisfying (9)-(12). This section is divided into
two parts. In the first part we discuss a priori bounds that are valid in any space
dimension, namely Propositions 4, 5, and 6. In the second part we prove additional
estimates, which are necessary to establish existence of smooth minimizers, which
are only valid in dimension d ≤ 3. By the generality of assumptions (9)-(12) we
can take P = 0 and let H̄ε = H̄ε(0). Let u be a minimizer of (1). We define the
probability measure

(36) m = e
ε2Δu+H(x,Du)−H̄ε

ε1 .
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We observe that because m is a probability measure, Jensen’s inequality implies
the following estimate:

(37)

∫
H(x,Du) ≤ H̄ε,

this in particular implies that any minimizer u of (1) is a priori bounded in W 1,2.
The previous inequality, together with setting φ = 0 in (1) yields the following
elementary estimate:

(38) min
x,p

H(x, p) ≤ H̄ε ≤ max
x

H(x, 0).

Proposition 4. Let u be a minimizer of (1) and m as in (36). We have

ε22

∫
Td

|D lnm|2 ≤ C.

Proof. We start by multiplying the Euler-Lagrange equation

ε2Δm− div(DpHm) = 0

by 1
m . Then, by integrating by parts and using elementary estimates, we obtain

ε2

∫
Td

|Dm|2
m2

≤ C

ε2

∫
Td

|DpH|2 ≤ C

ε2
,

since
∫
Td H ≤ C, by (37). �

Corollary 5. We have

‖ lnm‖W 1,2 ≤ C

ε1
+

C

ε2
.

Proof. Let f = lnm, then

(39) ε2Δu+H(x,Du) = ε1f + H̄ε.

Integrating (39) and using
∫
m = 1 and Jensen’s inequality, we obtain

minH − H̄ε ≤
∫

H(x,Du)− H̄ε ≤ ε1

∫
f ≤ 0.

By Poincaré inequality we have∫
f2 −

(∫
f

)2

=

∫ (
f −

∫
f

)2

≤ C

∫
|Df |2.

Thus, using (38), we have

(40)

∫
f2 ≤ C

ε21
+

C

ε22
.

�

Proposition 5. Let u be a minimizer of (1) and m as in (36). We have, uniformly
in ε, ∫

Td

Hm ≤ C.
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Proof. Observe that

ε2Δu+H(x,Du)−DpH(x,Du)Du+DpH(x,Du)Du = ε1 lnm+ H̄ε.

Integrating with respect to m yields∫
H(x,Du)−DpH(x,Du)Dudm ≥ H̄ε,

since
∫
m lnm ≥ 0 by Jensen’s inequality. Because

H(x, p)−DpH(x, p)p = −L(x,DpH(x, p)),

we have ∫
L(x,DpH(x,Du))m ≤ C,

which then coupled with (12) yields the desired estimate. �

Proposition 6. Let u be a minimizer of (1) and m as in (36). Then

‖
√
m‖H1 ≤ C√

ε1
,

(∫
m

2∗
2

) 2
2∗

≤ C

ε1
,

∫
|D2u|2m ≤ C,

and ∫
H2m ≤ C.

Proof. Let f = lnm. Then, applying the Laplacian Δ to (39) we get

ε2ΔΔu+ΔxH + 2D2
pkxi

Huxkxi
+D2

pkpl
Huxkxi

uxlxi
+DpHDΔu = ε1Δf.

Multiplying by m and integrating by parts yields∫
ε1|Df |2m+D2

pkpl
Huxkxi

uxlxi
m+ΔxHm+ 2D2

pkxi
Huxkxi

m = 0.

Thus ∫
ε1|Df |2m+

γ

2

∫
|D2u|2m ≤

∫
|D2

xxH|m+ C

∫
|D2

pxH|2m

≤ C + C

∫
Hm ≤ C.

This then implies ∫
|D2u|2m ≤ C.

Because

‖
√
m‖2H1 = 1 +

∫
|D

√
m|2 = 1 +

1

4

∫
|Df |2m ≤ C

ε1
we obtain, using Sobolev’s theorem,(∫

m2∗/2

)2/2∗

≤ C

ε1
.
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In particular, for any 1 ≤ p < ∞, and any α > 1,∫
|f |pm ≤ C + C

∫
| lnm|pm ≤ C +

(∫
m

2∗
2

) 2
2∗ α

.

Hence ∫
|f |pm ≤ Cα,p

εα1
.

From (39) we have
H2 ≤ Cε21f

2 + Cε22|D2u|2,
and thus ∫

H2m ≤ C,

uniformly for small ε. This implies in particular∫
|Du|4m ≤ C.

�

We will now establish further estimates that allow us to prove the existence of
smooth solutions for d ≤ 3. To simplify the notation we will set ε1 = ε2 = 1.

In what follows we will need to consider the equation

(41) Δw +G(x,Dw) = 0.

We suppose that G : T
d × R

d → R satisfies the following standard hypothesis,
namely

(42) |DpG(x, p)|2 ≤ C|p|2 + C,

(43) |p|2 ≤ CG(x, p) + η(x),

and

(44) DpG(x, p)p−G(x, p) ≥ c|p|2 + ζ(x),

for suitable functions η(x), ζ(x) ∈ L2. We suppose further that we have the follow-
ing a priori bounds for any solution w of (41), namely w ∈ W 1,2 and

(45) |DxG(x,Dw)| ≤ A(x)|Dw|+B(x); ‖w‖W 1,2 , ‖A‖L4 , ‖B‖L2 ≤ C.

The estimates that we develop next will be applied to

G(x, p) = H(x, p)− lnm− H̄,

for w = u, and also, after establishing suitable regularity for u, to

(46) G(p, x) = |p|2 −DpH(x,Du)p− div(DpH(x,Du)),

for w = lnm.
Observe that any solution w to (41) is also a solution to the time dependent

equation

(47) wt +Δw +G(x,Dw) = 0.

Inspired by the adjoint method by Evans (see [Eva10]) we introduce the adjoint
equation:

(48) ρt + div(DpG(x,Dw)ρ) = Δρ,

with ρ(x, 0) = δx0
. Note then that for each fixed t, ρ is a probability measure.
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Proposition 7. Let w be a solution of (41) and ρ a solution of (48). Then

−w(x0) =

∫ T

0

∫
Td

(DpG(x,Dw)Dw −G(x,Dw))ρ(x, t)dxdt(49)

−
∫
Td

w(y)ρ(y, T )dx.

Proof. Multiply equation (47) by ρ and add equation (48) multiplied by w. This
yields

wtρ+ wρt +Gρ+ w div(DpGρ) = wΔρ− ρΔw.

Note that ∫
Td

ρΔw − wΔρdx = 0.

Hence
d

dt

∫
Td

wρdx =

∫
Td

(DpG(x,Dw)Dw −G(x,Dw))ρdx.

Then integrating in time we obtain the result. �

Recall that

‖ρ‖L1(L2(dx),dt) =

∫ T

0

‖ρ(·, t)‖L2(Td)dt.

The previous estimate yields the following corollary:

Corollary 6.∫ T

0

∫
Td

|Dw|2ρ(x, t)dxdt ≤ C + C‖ρ‖L1(L2(dx),dt) + C osc(w),

where osc(w) denotes the oscillation of w.

Proof. Observe that
∫
Td w(y)ρ(y, T ) − w(x0) can be bounded by osc(w) since, for

each time t, ρ is a probability measure. Therefore, using (44) in (49) we get∫ T

0

∫
Td

|Dw|2ρdxdt ≤ C + C osc(w) + C

∫ T

0

∫
Td

|ζ|ρdxdt.

The estimate follows from∫ T

0

∫
Td

|ζ|ρdxdt ≤ ‖ζ‖L2‖ρ‖L1(L2(dx),dt).

�

Proposition 8. For 0 < α < 1, and any δ there exists Cδ such that∫ T

0

∫
Td

|D(ρα/2)|2dxdt ≤Cδ + δ

∫ T

0

∫
Td

|Dw|2ρdxdt.

Proof. Multiply (48) by αρα−1. Then

(50)
d

dt
ρα + αρα−1 div(DpG(x,Dw)ρ) = αρα−1Δρ.

We now integrate the previous identity on [0, T ] × T
d. First observe that because

ρ(·, t) is a probability measure we have

(51)

∫
Td

ρα(x, t)dx ≤ 1.
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Thus the integral of the first term of the left hand side of (50) is bounded by (51).
We also have ∫ T

0

∫
Td

αρα−1 div(DpG(x,Dw)ρ)dxd

= c̃α

∫ T

0

∫
Td

ρα/2ρα/2−1DρDpGdxdt

≤ ν

∫ T

0

∫
Td

|D(ρα/2)|2dxdt+ Cν

∫ T

0

∫
Td

|DpG|2ραdxdt,

for any ν > 0. Now we observe that, since 0 < α < 1,

ρα ≤ C + δρ.

Therefore, from (42), we conclude

C

∫ T

0

∫
Td

|DpG|2ραdxdt ≤ C + δ

∫ T

0

∫
Td

|Dw|2ρdxdt,

since we have
∫
Td |Dw|2dx ≤ C.

The corresponding right hand side term of (50) is

α(1− α)

∫ T

0

∫
Td

|Dρ|2ρα−2dxdt =
4(1− α)

α

∫ T

0

∫
Td

|D(ρα/2)|2dxdt.

Gathering the previous estimates we get

4(1− α)

α

∫ T

0

∫
Td

|D(ρα/2)|2dxdt ≤ C + ν

∫ T

0

∫
Td

|D(ρα/2)|2dxdt

+ δ

∫ T

0

∫
Td

|Dw|2ρdxdt.

Choosing ν small enough we obtain the result. �

Combining Corollary 6 with the previous estimate we conclude:

Corollary 7.

(52)

∫ T

0

∫
Td

|D(ρα/2)|2 ≤ C + Cδ‖ρ‖L1(L2(dx),dt) + Cδ osc(w).

Proposition 9. If d ≤ 3 there exists 0 < μ < 1 such that

(53) ‖ρ‖L1(L2(dx),dt) ≤ C

(∫ T

0

∫
Td

|D(ρα/2)|2
)μ

+ C.

Proof. Recall the following interpolation inequality. For 0 < θ < 1, 1 ≤ p0, p1 ≤ ∞,
g ∈ Lp0 ∩ Lp1 , and

1

pθ
=

θ

p1
+

1− θ

p0
,

we have

(54) ‖g‖Lpθ ≤ ‖g‖θLp1 ‖g‖1−θ
Lp0 .

For p1 = 1 and p0 = pα
2 and pθ = 2 we have

θ =
αp− 4

2αp− 4
.
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Fix 0 < t < T . From Sobolev’s theorem, we have (in dimension 2 for any
1 < p < ∞, and in higher dimensions for p = 2∗, where 2∗ is the Sobolev exponent
defined by 1

2∗ = 1
2 − 1

d ) that(∫
Td

ραp/2(x, t)dx

)1/p

≤
(∫

Td

|D(ρα/2(x, t))|2dx
)1/2

+ C.

Hence

‖ρ(·, t)‖Lαp/2(Td) ≤
(∫

Td

|D(ρα/2(x, t))|2dx
)1/α

+ C.

Using ρ ≥ 0,
∫
ρ(x, t)dx = 1, for all t and (54), we have

‖ρ(·, t)‖L2(Td) ≤ C

(∫
Td

|D(ρα/2)|2dx
)μ

+ C,

for

μ =
1− θ

α
=

p

2αp− 4
.

If p > 4 we can choose α close enough to 1 such that μ < 1. Because in dimension
2, p can be chosen arbitrarily large and in dimension 3, p = 6, the power 1−θ

α can
be chosen < 1 in both cases. In dimension 4 and higher this is no longer possible.

Then, by Jensen’s inequality,

‖ρ‖L1(L2(dx),dt) =

∫ T

0

‖ρ(·, t)‖L2(Td)dt(55)

≤ C

(∫ T

0

∫
Td

|Dρα/2|2dxdt
)μ

+ C.

�

Corollary 8.

(56)

∫ T

0

∫
Td

|D(ρα/2)|2 ≤ C + Cδ osc(w).

Proof. The inequality follows by using (53) in (52). �

Corollary 9.

(57) ‖ρ‖L1(L2(dx),dt) ≤ C + C(osc(w))μ.

Proof. The inequality follows by using (56) in (53). �

Corollary 10.

(58)

∫ T

0

∫
Td

|Dw|2ρ(x, t)dxdt ≤ C + C osc(w).

Proof. Using estimate (57) in the estimate of Corollary 6 as well as the elementary
inequality C + C(osc(u))μ ≤ C + C osc(u), we obtain the desired result. �

Theorem 6. Let G : Td × R
d → R satisfy (42), (43) and (44). Suppose w is a

solution of (41) satisfying (45). Assume d ≤ 3. Then w ∈ W 1,∞.
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Proof. Differentiate equation (47) with respect to a direction determined by a unit
vector ξ ∈ R

d. Then

(wξ)t +DpGDxwξ +Δwξ = −Gξ.

Take ϕ(t) smooth with ϕ(0) = 1, ϕ(T ) = 0. Set v = ϕ(t)wξ. Then

vt +DpGDxv +Δv = −ϕGξ + ϕ′wξ.

Integrate the previous identity with respect to ρ. Then

−v(x0, 0) =

∫ T

0

∫
Td

−ϕGξρ+ ϕ′wξρ−
∫
Td

v(x, T )ρ(x, T )dx.

Note that since v(x, T ) = 0 we have∫
Td

v(x, T )ρ(x, T )dx = 0.

By (43) we have for any small ν

|ϕ′wξ| ≤ νG(x,Dw) + Cν + |η| η ∈ L2.

Using this, (45) and Hölder inequality

|v(x0, 0)| ≤
∫ T

0

∫
Td

Cρ+ νGρ+ |η|ρ+ C(A(x)|Dw|+B(x))ρ

≤ C +

∫ T

0

∫
Td

νGρ+ C(‖√ρ‖L4(dx)‖Dw
√
ρ‖L2(dx) + ‖ρ‖L2(dx))

≤ C+ν

∫ T

0

∫
Td

Gρ+ C
(
‖ρ‖L1(L2(dx),dt)

∫ T

0

∫
Td

|Dw|2ρ
) 1

2 + C‖ρ‖L1(L2(dx),dt).

Then, using (57) and (58)

|v(x0, 0)| ≤ C + Cν osc(w) + C osc(w)
1+μ
2 + C osc(w)μ.

Because this inequality is uniform in x0 and ξ we can take on the left hand side the
supremum over x0 and ξ:

osc(w) ≤ C Lip(w) = C sup
x0,ξ

|v(x0, 0)|.

From this we have (choosing ν small enough to absorb the term Cν osc(w) in the
left-hand side)

Lip(w) ≤ C + C Lip(w)
1+μ
2 .

But then it follows that Lip(w) is bounded, and so w ∈ W 1,∞. �

From this result we obtain:

Corollary 11. If d ≤ 3, then u ∈ W 3,2 ∩W 1,∞.

Proof. The W 1,∞ bound follows from the fact that

G(x, p) = H(x, p)− lnm− H̄

satisfies the hypothesis of the previous theorem.
Therefore

Δu = H̄ + lnm−H(x,Du) ∈ L2

and so u ∈ W 2,2.
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We have D(H(x,Du)) = DxH + DpHD2u ∈ L2, and since D lnm ∈ L2 we
obtain

ΔDu = D lnm−D(H(x,Du)) ∈ L2

which gives u ∈ W 3,2. �

To proceed further and obtain higher regularity we need to address the regularity
of m.

Proposition 10. lnm ∈ W 1,∞.

Proof. For this we observe that w = lnm satisfies

(59) Δw + |Dw|2 − div(DpH(x,Du))−DpH(x,Du)Dw = 0.

Therefore lnm satisfies (41) for

G(x, p) = |p|2 −DpH(x,Du)p− div(DpH(x,Du)).

Note first that Dxi
(Dpj

H(x,Du)) = D2
xipj

H + D2
pjpl

Huxlxi
∈ L4. Since u ∈

W 3,2 ∩W 1,∞, from Sobolev’s inequality u ∈ W 2,4 ∩W 1,∞ for d ≤ 3. So

D2
xixk

(Dpl
H(x,Du)) = D3

xixkpj
H +D3

xipjpl
Huxlxk

+D3
pjplxk

Huxlxi

+D3
pjplpm

Huxlxi
uxmxk

+D2
pjpl

Huxlxixk
∈ L2.

From that it is clear that G satisfies all hypothesis of Theorem 6. �

Corollary 12. m ∈ W 2,2.

Proof. From the previous proposition we have m ∈ W 1,∞, but then

Δm = div(DpH)m+DpHDm ∈ L2

from which we conclude m ∈ W 2,2. �

Theorem 7. If d ≤ 3, u is smooth.

Proof. Because u ∈ W 3,2∩W 1,∞ we haveH(x,Du)∈W 2,2. We also havem ∈ W 2,2.
Thus

Δu = lnm+ H̄ −H(x,Du) ∈ W 2,2.

Then by elliptic regularity we have u ∈ W 4,2. But then equation (59) satisfied by
w = lnm has |Dw|2 ∈ L∞, div(DpH(x,Du)) ∈ W 2,2, and DpH(x,Du)Dw ∈ L∞.
Hence

Δw ∈ Lp,

for 1 < p < ∞ if d = 2 or 1 < p ≤ 6 if d = 2. This yields w ∈ W 2,p for those values
of p. From this we bootstrap |Dw|2, DpHDw ∈ W 1,p and so yield w ∈ W 3,2, and
also m ∈ W 3,2.

Then Δu+H(x,Du) ∈ W 3,2 and we iterate to get u ∈ W 5,2. Then we can repeat
the iteration to get increased regularity onm and u to any degree of smoothness. �
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6. Convexity and uniqueness

In this section we study the convexity of H̄ε and L̄ε and the uniqueness of
minimizers.

Lemma 1. The effective Lagrangian L̄ε is convex.

Proof. Let μ1, μ2 be such that AL(μi) = L̄ε(hi) and ρ(μi) = hi. Note that, for
0 ≤ λ ≤ 1,

ρ(λμ1 + (1− λ)μ2) = λρ(μ1) + (1− λ)ρ(μ2) = λh1 + (1− λ)h2

and

mλμ1+(1−λ)μ2
= λmμ1

+ (1− λ)mμ2
.

Then, since the entropy S̄ is convex, we have that

L̄ε(λμ1 + (1− λ)μ2) ≤ AL(λμ1 + (1− λ)μ2)

≤ λAL(μ1) + (1− λ)AL(μ2)

= λL̄ε(h1) + (1− λ)L̄ε(h2).

�

Lemma 2. Either for quadratic Hamiltonians, or for H(p, x) strictly convex Hamil-
tonians in p and in dimension 2, H̄ε(P ) is strictly convex. Furthermore for each P
(1) admits at most one minimizer, up to the addition of constants.

Proof. In fact, let P0, P1 ∈ R
d and 0 < λ < 1 be such that

H̄ε(λP0 + (1− λ)P1) = λH̄ε(P0) + (1− λ)H̄ε(P1).

Let f, g ∈ C2(Td) such that

H̄ε(P0) = ε1 log

∫
e

ε2Δf+H(x,P0+Df)
ε1 dx,

H̄ε(P1) = ε1 log

∫
e

ε2Δg+H(x,P1+Dg)
ε1 dx.

Set ϕ = λf + (1− λ)g. Then

Δϕ = λΔf + (1− λ)Δg,

Dϕ+ λP0 + (1− λ)P1 = λ(Df + P0) + (1− λ)(Dg + P1),

and, by convexity,

(60) H(x, λP0 + (1− λ)P1 +Dϕ) ≤ λH(x,Df + P0) + (1− λ)(H(x,Dg + P1)).

By convexity of the exponential function and Hölder inequality we get

e
H̄(λP0+(1−λ)P1)

ε1 ≤
∫

e
ε2Δϕ+H(x,λP0+(1−λ)P1+Dϕ)

ε1 dx

≤
∫

e
λ
ε1

(ε2Δf+H(x,Df+P1))+
(1−λ)

ε1
(ε2Δg+H(x,Dg+P2))dx

≤
(∫

e
ε2Δf+H(x,Df+P1)

ε1 dx

)λ

·
(∫

e
ε2Δg+H(x,Dg+P2)

ε1 dx

)(1−λ)

= e
λH̄ε(P0)

ε1 e
(1−λ)H̄ε(P1)

ε1 = e
H̄ε(λP0+(1−λ)P1)

ε1 .(61)
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Therefore all inequalities in (61) are equalities, and so is (60). Since H is strictly
convex, Df + P0 = Dg + P1 at all points. Hence P1 − P0 = D(f − g) is an exact
differential and then P0 = P1 and f = g, up to a constant. �

7. Smoothness of the effective Lagrangian

and Hamiltonian functions

In this section we fix ε and study the differentiability of H̄ε and L̄ε, i.e. Theorem
3, both for mechanical Hamiltonians and for the two dimensional case.

Proof. As in [I-SM], to prove the differentiability of H̄ε we use the implicit function
theorem (see for example [D1], Chapter X).

The minimizer φ(·, P ) in (1) satisfies (22) with ϕ(x) = Px+ φ(x, P ). Let

Hk
0 (T

d,R) =

{
f ∈ Hk(Td,R) :

∫
f = 0

}
.

Define
F : Rd ×Hk

0 (T
d,R) → Hk−4

0 (Td,R)

by

(62) F (P, φ) := ε2Δmϕ − div(mϕDpH(x, P +Dφ)).

For k large enough, the map F is C∞. Indeed the map F can be obtained
by composing derivatives of φ, which is a C∞ operation from Hk to Hk−1, with
smooth functions. But for k large enough if G : Rn → R

m is C∞, then the map

Ḡ : Hk(Td,Rn) → Hk(Td,Rm), Ḡ(Ψ) = G ◦Ψ
is C∞. The partial derivative of F , the Euler-Lagrange equation, with respect to
the variable φ can be regarded as a linear map

L := D2F (P, φ) : Hk
0 (T

d,R) → Hk−4
0 (Td,R)

which is given by

L(ψ) =
ε2
ε1

Δ [mϕ(ε2Δψ +DpH(x, P +Dφ)Dψ)]

− div

[
mϕ

ε1
(ε2Δψ +DpH(x, P +Dφ)Dψ)DpH(x, P +Dφ)

]
− div

[
mϕD

2
ppH(x, P +Dφ)Dψ

]
.

L is a fourth-order elliptic Fredholm PDO of index 0.

Lemma 3. L is an isomorphism.

Proof. We have∫
L(ψ)ψ =

∫
mϕ

ε1
(ε2Δψ +DpH(x, P +Dφ)Dψ)2

+

∫
mϕ〈D2

ppH(x, P +Dφ)Dψ,Dψ〉.(63)

We claim that there is a constant C such that
∫
L(ψ)ψ ≥ C‖ψ‖H2

0
. Otherwise

there is a sequence ψn ∈ H2
0 with ‖ψ‖H2

0
= 1 such that

∫
L(ψn)ψn converges to

zero. In such a case (63) implies that ‖Dψn‖L2 converges to zero. Since

2ε2ΔψDpH(x, P +Dφ)Dψ ≥ −1

2
(ε2Δψ)2 − 2(DpHp(P +Dφ)Dψ)2,
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there is a constant δ > 0 such that

(64)

∫
mϕ

ε1
[(ε2Δψ +Hp(I, P +Dφ)Dψ)2 + (Hp(I, P +Dφ)Dψ)2]

≥
∫

mϕ

2ε1
(ε2Δψ)2 ≥ δ

∫
(Δψ)2.

Therefore ‖D2ψn‖L2 = ‖Δψn‖L2 converges to zero. Thus L is one to one and then
an isomorphism. �

The previous lemma makes clear the use of Hk
0 as the domain and target for L,

that is, to have ker(L) and coker(L) equal to zero.
We can now apply the implicit function theorem to conclude that φ(, P ) is smooth

in P .
Consequently, H̄ε is smooth, and since it is also strictly convex, the map DH̄ε has

a smooth inverse γε and therefore L̄ε(Q) = hγε(Q)− H̄ε(γε(Q)) is also smooth. �

8. Limiting behavior

In this section we fix P ∈ R
d and prove Theorem 4. We assume we are either

in dimension d = 2 or in the mechanical case. Let uε be the minimizer in (1). By
(37), uε is a priori bounded in W 1,2. Thus, through some subsequence there exists
u ∈ W 1,2 such that uε ⇀ u, in W 1,2, as ε → 0. Also, since H̄ε is bounded it
converges through a subsequence to a limit. We have the following two results:

Proposition 11.
lim sup
ε→(0,0)

H̄ε(P ) ≤ H̄(P ).

Proof. Let φε2 be a solution to (5). Then

eH̄ε(P )/ε1 ≤
∫

eε2Δφε2
(x)+H(x,P+Dφε2

)/ε1dx = eH̄ε/ε1 ≤ eȞε2
(P )/ε1

and so
lim sup
ε→(0,0)

H̄ε(P ) ≤ lim
ε2→0

Ȟε2(P ) = H̄(P ).

�
We now address the opposite inequality:

Proposition 12. Suppose ε → 0 with ε1
ε2

bounded. Then

(65) lim inf H̄ε(P ) ≥ H̄(P ).

Proof. Suppose that (65) is not true. Then there is δ > 0 such that

lim inf
ε→(0,0)

H̄ε(P ) < H̄(P )− 2δ.

Let
Bε = {x ∈ T

d : ε2Δuε(x) +H(x, P +Duε) > H̄(P )− δ}.
Then for some sequence εk → (0, 0) we have

εk1 log |Bεk |+ H̄(P )− δ ≤ H̄(P )− 2δ.

Therefore,

|Bεk | ≤ exp(− δ

εk1
).



STOCHASTIC EVANS-ARONSSON PROBLEM 925

Let fε = ε2Δuε +H(P +Duε, x) and g ∈ C∞(Td) be a non-negative function. By
lower semicontinuity∫

Td

H(x, P +Du)g ≤ lim inf
k→∞

∫
Td

−εk2DuεkDg +H(x, P +Duεk)g

≤ lim inf
k→∞

∫
Td

fεkg

= lim inf
k→∞

(

∫
Bε

fεkg +

∫
Bc

ε

fεkg)

≤ (H̄(P )− δ)

∫
Td

g + lim inf
k→∞

∫
Bε

fεkg

≤ (H̄(P )− δ)

∫
Td

g + lim inf
k→∞

‖fεk‖2‖χBε
g‖2

≤ (H̄(P )− δ)

∫
Td

g.

Since, assuming ε1
ε2

is bounded, we have by Corollary 5 that ‖fε‖2 ≤ C. This in
particular shows that

H(x, P +Du) ≤ H̄(P )− δ

almost everywhere, and so u is Lipschitz. Then there is ρ > 0 such that

H(x, P +Du(y)) < H(y, P +Du(y)) +
δ

2
a.e., d(x, y) <

ρ

2
.

Set ψρ = ηρ ∗ u, where ηρ is the standard mollifier supported in B(0, ρ). From the
convexity of H and Jensen’s inequality

H(x, P +Dψρ(x)) ≤
∫

H(x, P +Du(y))ηρ(y − x)dy

≤
∫
(H(y, P +Du(y)) +

δ

2
)ηρ(y − x)dy

≤ H̄(P )− δ

2
(66)

for all x ∈ T
d, which contradicts (3). �

The two previous propositions combined yield the following corollary.

Corollary 13. Let uε be a sequence of minimizers of (1). Suppose as ε → (0, 0),
with ε1

ε2
bounded, uε ⇀ u in W 1,2. Then

H(x, P +Du) ≤ H̄(P )

almost everywhere and in viscosity sense.

Suppose H is a mechanical Hamiltonian. Let u = limεk→(0,0) uε, where the limit

is taken through an appropriate sequence such that
εk1
εk2

is bounded. Because uε is

uniformly Lipschitz, we can assume that the convergence of uεk to u is uniform.

Proposition 13. Suppose H is a mechanical Hamiltonian. Let u = limεk→(0,0) uε,

where the limit is taken through an appropriate sequence such that
εk1
εk2

→ 0. Then

u is a solution to
H(x, P +Du) = H̄(P ).
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Proof. Let vεk be defined through (28). Because uεk − vεk is uniformly Lipschitz,

by Theorem 5 we have
εk1
εk2
(uεk − vεk), which is uniformly bounded by (31) and

whose Lipschitz constant converges to zero, must converge, through a suitable sub-
sequence, to a constant, which then has to be H̄(P ). �

Proposition 14. Assuming ε1
ε2

bounded we have με → μ with μ Mather.

Proof. For some sequence εk → (0, 0) the measures μεk converge weakly to a mea-
sure μ. For any ψ ∈ C2(Td)∫

Td×Rd

Dψ(v)dμ = lim
k→∞

∫
Dψ ·Hp(x, P +Duεk(x))mεk(x)dx

= − lim
k→∞

εk2

∫
Δψ(x)mεk(x)dx

= 0.

Thus μ is holonomic. Recall that fε = ε2Δuε+H(P+Duε, x) is uniformly bounded
from below for the mechanical Hamiltonian or in L2 assuming ε1

ε2
is bounded for a

general Hamiltonian. For λ > 0

H̄ε(P ) =

∫
{fε≥H̄ε(P )−λ}

H̄ε(P )mε +

∫
{fε<H̄ε(P )−λ}

H̄ε(P )mε

≤
∫

{fε≥H̄ε(P )−λ}

(fε + λ)mε +

∫
{fε<H̄ε(P )−λ}

(H̄ε(P ) + fε − fε)mε

≤
∫

fεmε + λ+ Ce−ε1λ.

Thus

H̄(P ) = lim
ε→0

H̄ε(P ) ≤ lim inf
ε→0

∫
fεmε + λ.

Since λ > 0 is arbitrary

H̄(P ) ≤ lim inf
ε→0

∫
fεmε.

Thus∫
L(x, v)dμ = lim

k→∞

∫
L(x,DpH(P +Duεk , x))mεk(x)dx

= lim
k→∞

∫
((P +Duεk)DpH(P +Duεk , x)−H(P +Duεk , x))mεk(x)dx

= lim
k→∞

∫
(PDpH(P +Duεk , x)− fεk)mεk(x)dx

≤ P

∫
vdμ− H̄(P ) ≤ L̄(

∫
vdμ) ≤

∫
L(x, v)dμ

so all inequalities are equalities. �

Proof of Theorem 4. The first point of the theorem, the convergence of H̄ε, follows
from Propositions 11 and 12. The second and third points follow from Corollary
13 and the last one is simply Proposition 14. �
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9. Connection with mean-field games

Recently, Caines and his co-workers [HMC06], [HMC07], and independently Li-
ons and Lasry [LL06a], [LL06b], [LL07a] and [LL07b] (see also [LLG10a], [LLG10b]),
introduced a new class of problems called mean-field games, some of which have a
surprising connection with the Evans-Aronsson problems.

In the stationary setting, one of the main examples of mean-field games is de-
scribed by systems of equations of the form{

ε2Δu+ F (x,Du,m) = F̄ ,

ε2Δm− div(DpFm) = 0,

where F̄ is a suitable constant. The variational problem studied in this paper is
included in this class, and if we set

F (x, p,m) = H(x, p)− ε1 lnm

we have

(67)

{
ε2Δu+H(x,Du) = H̄ε + ε1 lnm,

ε2Δm− div(DpHm) = 0.

The results in this paper imply the existence of stationary solutions of this class of
mean-field games both for quadratic Hamiltonians and for two dimensional prob-
lems (when H satisfies (9)-(12)). For quadratic Hamiltonians Hopf-Cole transfor-
mations are widely used; see for example [Ge1] where time dependent mean-field
games are studied. However, the regularity estimates in section 4 are new. The
convergence results of the previous section establish the existence of a vanishing
coupling (ε1 → 0) and viscosity (ε2 → 0) limit for the mean-field games. Estimates
similar to the ones for

∫
m2∗/2 and

∫
|D2u|2m + |D lnm|2 were obtained in the

deterministic case by Evans [E2]. We end the paper with a new estimate for third
derivatives of the solution:

Proposition 15. Let u be a solution of (67). Then, if ε2 is small enough∫
Td

|ε2DΔu|2m ≤ C

ε2
.

Proof. Differentiating the first equation in (67) and multiplying by 2Du, we get

ε2Δ|Du|2 − 2ε2|D2u|2 +DpHD|Du|2 + 2DxHDu = 2ε1DfDu,

where f = lnm, as before. Letting v = |Du|2 and multiplying by vk we obtain

(ε2Δv)vk − 2ε2|D2u|2vk + (DpHDv)vk + 2(DxHDu)vk = 2ε1(DfDu)vk.

Multiplying by m we have

m

k + 1
(ε2Δvk+1+DpHDvk+1)− 2ε2|D2u|2vkm− kε2|Dv|2vk−1m

+ 2(DxHDu)vkm = 2ε1(DfDu)vkm.

Integrating,

(68) ε2

∫
2|D2u|2vkm+ k|Dv|2vk−1m = 2

∫
(DxHDu− ε1DfDu)vkm.
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Thus, for k = 1 we have (using |DxH| ≤ C + Cv)

2ε2

∫
|D2u|2vm+ ε2

∫
|Dv|2m

≤ C

∫
(v3/2 + v5/2 + ε1|Df |2)m+ ε1

∫
v3m.

Then, because

v5/2 ≤ Cv + Cv3 ≤ v(C + Cε22|D2u|2 + Cε21f
2)

ε1v
3 ≤ ε1v(C + Cε22|D2u|2 + Cε21f

2)

we have

2ε2

∫
|D2u|2vm+ ε2

∫
|Dv|2m

≤ C

∫
(v3/2 + ε1v + ε1v

2 + ε51f
4 + ε1|Df |2)m+ ε22C

∫
|D2u|2vm.

Then ε2
∫
|D2u|2vm, ε2

∫
|Dv|2m are uniformly bounded, if ε2 is small enough.

Now D(H(x,Du)) = DxH +DpHD2u, so

|D(H(x,Du)|2 ≤ Cv2 + C + C(v + 1)|D2u|2

and then ∫
|D(H(x,Du)|2m ≤ C

ε2
.

So ∫
|ε2DΔu|2m ≤ Cε21

∫
|Df |2m+ C

∫
|D(H)|2m ≤ C +

C

ε2
.

�

For low dimensions we could use (68) for k > 1 to get additional estimates.
As a final remark we should observe that variational methods in mean-field games

is, as far as the authors are aware, a largely unexplored direction which may yield
new estimates and results in this very challenging set of problems.
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