Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Smoothness of Loewner slits

Author: Carto Wong
Journal: Trans. Amer. Math. Soc. 366 (2014), 1475-1496
MSC (2010): Primary 30C20
Published electronically: September 11, 2013
MathSciNet review: 3145739
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we show that the chordal Loewner differential equation with $ C^{\delta }$ driving function generates a $ C^{\delta \tfrac {1}{2}}$ slit for $ \tfrac {1}{2} < \delta \leq 2$, except when $ \delta = \frac {3}{2}$ the slit is only proved to be weakly $ C^{1,1}$.

References [Enhancements On Off] (What's this?)

  • 1. I. A. Aleksandrov.
    Parametric continuations in the theory of univalent functions (in Russian).
    Izdat. `Nauka', 1976. MR 0480952 (58:1099)
  • 2. L. de Branges.
    A proof of the bieberbach conjecture.
    Acta. Math., 154:137-152, 1985. MR 772434 (86h:30026)
  • 3. Peter L. Duren.
    Univalent Functions.
    Springer-Verlag New York Inc., 1983. MR 708494 (85j:30034)
  • 4. C. Earle and A. Epstein.
    Quasiconformal variation of slit domains.
    Proc. Amer. Math. Soc, 129:3363-3372, 2001. MR 1845014 (2002f:30009)
  • 5. Wouter Kager, Bernard Nienhuis, and Leo P. Kadanoff.
    Exact solutions for loewner evolutions.
    Journal of Statistical Physics, 115(3/4), May 2004. MR 2054162 (2005b:30008)
  • 6. P. P. Kufarev.
    A remark on integrals of the loewner equation.
    Dokl. Akad. Nauk SSSR, 57:655-656, 1947. MR 0023907 (9:421d)
  • 7. S. Lalley, G. Lawler, and H. Narayanan.
    Geometric interpretation of half-plane capacity.
    Electron Commun. Probab., 14:566-571, 2009. MR 2576752 (2011b:60332)
  • 8. G. Lawler.
    Conformally Invariant Processes in the Plane.
    American Mathematical Society, 2005. MR 2129588 (2006i:60003)
  • 9. G. Lawler, O. Schramm, and W. Werner.
    Conformal invariance of planar loop-erased random walks and uniform spanning trees.
    Annals of Probability, 32(1B):939-995, 2004. MR 2044671 (2005f:82043)
  • 10. J. Lind, D. E. Marshall, and S. Rohde.
    Collisions and Spirals of Loewner Traces.
    Duke Math. Journal, 154(3):527-573, 2010. MR 2730577 (2011h:30029)
  • 11. Jind Lind.
    A sharp condition for the loewner equation to generate slits.
    Ann. Acad. Sci. Fenn. Math., 30:143-158, 2005. MR 2140303 (2006b:30013)
  • 12. D. E. Marshall and S. Rohde.
    The loewner differential equation and slit mappings.
    Journal of the American Mathematical Society, 18(4):763-778, October 2005. MR 2163382 (2006d:30022)
  • 13. Ch. Pommerenke.
    Boundary Behaviour of Conformal Maps.
    Springer-Verlag Berlin Heidelberg, 1992. MR 1217706 (95b:30008)
  • 14. Steffen Rohde and Oded Schramm.
    Basic properties of SLE.
    Annals Math., 161:879, 2005. MR 2153402 (2006f:60093)
  • 15. Steffen Rohde, Huy Tran, and Michel Zinsmeister.
    A Condition for the Loewner Equation to Generate Rectifiable Curves (title not confirmed).
  • 16. Steffen Rohde and Carto Wong.
    Half-plane capacity and conformal radius.
    eprint arXiv:1201.5878, Jan 2012.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 30C20

Retrieve articles in all journals with MSC (2010): 30C20

Additional Information

Carto Wong
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195

Received by editor(s): February 9, 2012
Published electronically: September 11, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society